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We study the thermodynamic properties of the three-dimensional Blume-Capel model on the simple cubic
lattice by means of computer simulations. In particular, we implement a parallelized variant of the multicanonical
approach and perform simulations by keeping a constant temperature and crossing the phase boundary along the
crystal-field axis. We obtain numerical data for several temperatures in both the first- and second-order regime
of the model. Finite-size scaling analyses provide us with transition points and the dimensional scaling behavior
in the numerically demanding first-order regime, as well as a clear verification of the expected Ising universality in
the respective second-order regime. Finally, we discuss the scaling behavior in the vicinity of the tricritical point.
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I. INTRODUCTION

The Blume-Capel (BC) model consisting of a spin-1
Ising Hamiltonian with a single-ion uniaxial crystal-field
anisotropy [1,2] is one of the most studied models in the
communities of statistical mechanics and condensed matter
physics. This is not only because of the relative simplicity
with which approximate calculations for this model can be
carried out and tested, as well as the fundamental theoretical
interest arising from the richness of its phase diagram, but
also because versions and extensions of the model can be
applied for the description of many different physical systems,
some of them being multicomponent fluids, ternary alloys, and
3He-4He mixtures [3]. Recent applications of the BC model
include analyses of ferrimagnets, as discussed in a thorough
contribution by Selke and Oitmaa [4].

The BC model is described by the Hamiltonian

H = −J
∑
〈ij〉

σiσj + �
∑

i

σ 2
i = EJ + �E�, (1)

where the spin variables σi take on the values {−1,0,+1}, 〈ij 〉
indicates summation over all nearest-neighbor pairs of sites,
and J > 0 is the ferromagnetic exchange interaction (here
we set J = 1 and kB = 1 to fix the temperature scale). The
parameter � is known as the crystal-field coupling that controls
the density of vacancies (σi = 0). For � → −∞ vacancies
are suppressed and the model maps onto the Ising model.
We always employ periodic boundary conditions. Note here
that the second formulation of the Hamiltonian (1), via the
definitions of EJ and E�, will allow us to define the necessary
observables for the application of our finite-size scaling (FSS)
scheme that is discussed in detail below.

As is well known, the pure and disordered versions of the
model of Eq. (1) have been analyzed, besides the original
mean-field theory [1,2], by a variety of approximations
and numerical approaches, in both two (2D) and three
dimensions (3D). These include the real-space renormaliza-
tion group [5], Monte Carlo renormalization-group calcula-
tions [6], ε-expansion renormalization groups [7], high- and
low-temperature series expansions [8], a phenomenological
FSS analysis using a strip geometry [9,10], and, of course,
Monte Carlo simulations [11–22].

The phase diagram of the pure model consists of a segment
of continuous Ising-like transitions at high temperatures and
low values of the crystal field. This ends at a tricritical point
(�t,Tt), where it is joined with a second segment of first-order
transitions ending for T = 0 at �0 = zJ/2, with z denoting the
coordination number of the considered lattice. In the present
case of a simple cubic lattice, where z = 6, it follows that
�0 = 3. A general sketch of the phase diagram is given in
Fig. 1 and is outlined in the relevant caption. The location of
the tricritical point, marked by the black diamond in Fig. 1, has
been estimated by Deserno [14] using a microcanonical Monte
Carlo approach to be (�t,Tt) = (2.844 79(30),1.4182(55)).

The scope of the present paper is to present a comple-
mentary study of the 3D BC model embedded in the simple
cubic lattice. Our simulations follow a sophisticated numerical
scheme, outlined in Sec. II, using as a platform the multi-
canonical approach. This is especially suitable for the study of
systems that undergo a first-order phase transition, where it is
well known that numerical simulation is a hard task to perform.
One interesting aspect of the present work is that we cross,
in our simulations, the phase boundary of the system along
the crystal-field axis, keeping the temperature fixed. Thus, we
obtain relevant thermodynamic observables as a function of the
crystal field � and we perform a FSS analysis on a different
basis. This analysis is presented in Sec. III, in both the first- and
second-order regimes of the model, where the second-order
regime is used as a test case of our scheme and more attention
is paid to the first-order regime of the phase diagram, which
is computationally much more challenging. In particular, we
consider three different temperatures: one in the second-order
regime, T1 = 2.0, and two in the first-order regime, T2 = 1.0
and T3 = 0.9. Moreover, we discuss the scaling properties
in the vicinity of the proposed tricritical point by performing
additional simulations and relevant analyses at the temperature
Tt = 1.4182 suggested in Ref. [14]. This contribution is ended
in Sec. IV, where a brief summary of our conclusions is given
together with an outlook for future work.

II. NUMERICAL METHOD AND SCALING OBSERVABLES

We apply the multicanonical method [23,24] with the
slight modification to yield a flat histogram not in the total
energy E, but rather in E�. The multicanonical method allows
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FIG. 1. General sketch of the phase diagram of the 3D BC model
in the temperature–crystal-field plane. The phase boundary separates
the ferromagnetic (F) phase from the paramagnetic (P) phase, in
which the solid line indicates continuous phase transitions and the
dotted line first-order phase transitions. The two lines merge at
the tricritical point (TP), as highlighted by the black diamond. The
limiting cases of T = 0 and � = 0 are marked on the relevant axis
with �0 = 3 and T0 = 3.195(1) [22], respectively. The horizontal
arrows illustrate the direction of crossing the phase boundary at
fixed temperatures, studied in this work, in both the second-order
(T1 = 2.0) and the first-order (T2 = 1.0 and T3 = 0.9) regimes, as
well as in the vicinity of the tricritical point (Tt = 1.4182) [14].

one to increase the probability to sample otherwise suppressed
states and, with it, overcome emerging barriers. Hence, it
is an optimal tool to study first-order phase transitions.
The canonical expectation value weights all observables of
the phase space with the Boltzmann weight, which leads to the
general form

〈O〉 = 1

Z

∑
x

O(x)e−βE(x), (2)

where Z = ∑
x e−βE(x) is the partition sum, β = 1/T is the

inverse temperature, and x stands for the spin configurations.

For the usual multicanonical method, the Boltzmann weight in
the canonical probability distribution exp{−βE(x)} is replaced
by a weight function W [E(x)] that is iteratively modified to
yield a flat energy histogram. At this point, we can rewrite E =
EJ + �E�, separate the probability distribution, and replace
the Boltzmann weight depending on E�:

e−βEJ e−β�E� → e−βEJ W (E�). (3)

Considering a fixed inverse temperature β, one is then able
to iteratively adapt W (E�) in order to yield a flat histogram in
E�. This is, in fact, quite similar to multimagnetic simulations
and also suited for the application of a parallel implementation
of the multicanonical method [25]. We made use of this
parallelization with up to 36 cores, which speeds up the
iteration process and provides 36 independent production runs.
The canonical expectation values at a certain point (�,T )
may then be estimated with standard histogram and time-
series reweighting techniques [26]. Since the multicanonical
simulation is still an importance sampling Markov chain,
one only needs to consider the multicanonical variable E�,
illustrated for the case of time-series reweighting of a given
observable O:

〈O〉β,� =
∑

x O(x)e−β�E�(x)W−1[E�(x)]∑
x e−β�E�(x)W−1[E�(x)]

. (4)

Here 〈· · · 〉 clearly refers to the estimator of the expectation
value and we drop the subscripts in the following. Figure 2
shows an example of the reweighted probability distributions
of e� = E�/V , where V = L3 and L denotes the linear
system size, at the transition field �eqh, i.e., where the
distribution shows two peaks of equal height. Well inside the
first-order regime the system shows a barrier increasing with
the system size, characteristic of the nature of the transition,
which reaches at T3 = 0.9 already for a system size of V = 243

spins the order of 10−130; see Fig. 2(a). On the other hand, at
the proposed tricritical point (see panel (b) with numerical
data obtained at Tt = 1.4182 [14]) no definite judgement
can be made. We observe that the distributions still show
a double-peaked structure, yet with a much smaller barrier,
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FIG. 2. (Color online) Illustration of the reweighted probability distribution at the transition field �eqh with respect to e� = E�/V at (a)
T = 0.9, which is well inside the first-order regime of the system (note the strongly increasing barrier with the system size), exhibiting a major
suppression of intermediate states which is common for first-order transitions, and at (b) T = Tt = 1.4182, which is in the vicinity of the
tricritical point.
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which does not diverge with increasing system size. A more
illuminating discussion of this special temperature is given at
the end of Sec. III.

It is worth noting here that the E� are always integer in the
range [0,V ], which is a major advantage for the application
of the present method. This would not be the case for the
usual multicanonical [23,24] and Wang-Landau [27] methods
at fixed � based on the total energy E, because E ∈ R for
noninteger values of �. Additionally, our previous experience
with the application of the Wang-Landau method to the BC
model in the low-temperature regime for a fixed value of �

suggested that one needs to be extremely careful in the details
of implementation. For instance, the need to simulate large
enough system sizes leads to the inevitable application of a
multirange approach of the Wang-Landau method, that is,
splitting the energy range in many subintervals [18]. This
approach, although appearing to be much faster than the
straightforward one-range implementation, may give rise to
several problems with respect to the breaking of ergodicity
of the process [28–30] and possible distortions (systematic
errors) induced on the density of states [31]. On the other
hand, the numerical framework developed and applied in
the current paper does not suffer from this type of inherent
problem. On the contrary, the parallelized variant of the
multicanonical approach used, combined with the orthogonal
scaling of the phase boundary has proven to be a promising
scheme for the first-order transition regime. This will be clearly
shown in the following section with the accurate estimation
of transition points �∗ even for temperatures T < 1, which
is a commonly accepted, harsh numerical task. Still, for the
second-order regime both the current approach and any other
type of generalized ensemble sampling method would give
comparable results within the statistical errors as we have
already verified by our preliminary numerical tests. In fact, the
modification to a flat-histogram method in a subenergy is not
restricted to the present model or a spin system in general and
has been applied in a similar way also to a polymer system in
disorder [32]. Moreover, the formulation for other generalized
ensemble methods is straightforward.

In order to obtain transition points for the FSS analysis,
one usually considers the peak of the specific heat C, magnetic
susceptibility χ , or any other suitable temperature derivative of
an order parameter [26]. In principle, the magnetic properties
of the system show a more reliable behavior when one is
interested in obtaining accurate estimates of critical points and
it is a common practice along these lines to first estimate the
magnetic exponents β, γ , and ν, and then, via the hyperscaling
relation, the exponent α of the specific heat. However, also
other scaling approaches based on a different philosophy have
been successfully used in the literature, depending always
on the direction of intersecting the phase boundary of the
model under study. For instance, it has been shown that for
the 3D random-field Ising model at zero temperature, the field
derivative of the bond energy EJ defines a specific-heat-like
quantity from which one may produce accurate estimates of
the critical exponent ratio α/ν and whose shift behavior defines
correct critical points in the field-temperature plane [33].

For the present study, where we are crossing the phase
diagram at fixed temperature along the crystal-field axis, we
may as well consider instead of the standard definitions,

the field derivative of the form ∂/∂�. The derivative of the
expectation value (2) yields

∂〈O〉
∂�

= −β[〈OE�〉 − 〈O〉〈E�〉] +
〈

∂

∂�
O

〉
, (5)

which is similar to any specific-heat-like quantity because, in
general, the observable is independent on the variable and the
last term drops out. This is true for either Ei , where i = J ,
or �; however, the total energy E = EJ + �E� is no longer
independent on the field, which leads to

∂〈E〉
∂�

= −β[〈EE�〉 − 〈E〉〈E�〉] + 〈E�〉

= ∂〈EJ 〉
∂�

+ �
∂〈E�〉
∂�

+ 〈E�〉. (6)

However, the last line suggests—expecting a critical or
diverging behavior—that we may limit our consideration to
either of the energy contributions. In fact, we consider here
only the field derivative of the spin-spin interaction term,

C(�) = ∂〈EJ 〉
∂�

= −β[〈EJ E�〉 − 〈EJ 〉〈E�〉]. (7)

Similar considerations may apply also for other suitably
defined thermodynamic functions that could provide us, for
instance, with estimates of magnetic exponents mentioned
above. Yet, this task goes beyond the scope of the present
work where we focus on the first-order transition regime of the
BC model and target only at a qualitative comparison to the
expected Ising criticality in the second-order transition regime.
In fact, this comparison becomes even more clear via the use
of the straightforwardly defined specific-heat-like quantity (7).

Relevant plots of C(�) can be found in the next section in
Figs. 3 and 5 and are discussed there. However, it is obvious
from these illustrations that there exists clearly a maximum
of C(�) that moreover shows a shift behavior as well. Let
us define now �∗

L as the crystal-field value at which C(�)
attains its maximum, and as we shall see below this defines
a suitable pseudocritical, or pseudotransition, parameter that
carries in itself the approach to the thermodynamic limit in
the second- and first-order regime of the model, respectively.

FIG. 3. Specific-heat curves as a function of the crystal field � for
T = 2.0 and several system sizes in the second-order regime. Smooth
curves typical of continuous transitions with a clear shift behavior are
observed.
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Similarly, we denote by C∗
L the value of the specific heat at this

pseudocritical point C(�∗
L). The value of �∗

L is numerically
determined by calculating the second derivative of 〈EJ 〉 with
respect to �, analogous to the above calculations, and finding
the zero crossing. For this, we apply a bisection algorithm
with time-series reweighting for the full data set, as well as w

subsets, each excluding 1/w measurements, for the jackknife
error calculation [34]. The jackknife method is similarly then
used for C∗

L.
To sum up, using the above scheme, we have performed

simulations for the three temperatures shown in Fig. 1 and
outlined in the Introduction, as well as for the tricritical
temperature Tt = 1.4182 [14]. In all cases, we considered
various linear system sizes within the range L = 8–28. In
principle, our numerical approach could as well simulate even
larger system sizes, especially in the second-order regime.
Still we have found it useful to optimize our code following
the needs of a careful inspection of the first-order regime,
for which linear sizes of the order of L = 28 are already
quite large, taking into account that we are well into the
low-temperature part of the phase diagram of the model.

III. FINITE-SIZE SCALING ANALYSIS

In this section, we present the main results of our contribu-
tion based on a FSS analysis of the numerical data obtained
with the method outlined above. As a first step we consider
the scaling in the second-order regime of the model (T > Tt)
and, in particular, at the temperature T1 = 2.0. Let us point
out here that when it comes to the second-order transition
regime of the BC model, the modified multicanonical method
as implemented here is by no means the method of choice
if one wants to obtain high-accuracy estimates of critical
exponents (or critical points) and cannot compete against other
cluster-update methods [35] or more involved generalized
ensemble schemes [36,37] especially tailored to this situation.
However, a qualitative study at this regime allows a direct
comparison to the extensive and precise literature of the simple
3D Ising model, thus serving as a clear-cut test of the proposed
scheme. Additionally, it justifies the results and conclusions
drawn from our study in the first-order regime, presented
later in this section for two temperature values (T2 = 1.0 and
T3 = 0.9 in Fig. 1), which is not so easy to control given the
huge energy barriers illustrated in Fig. 2(a). Finally, in the last
part of this section, we discuss the scaling behavior of our
observables at an estimate of the tricritical point [14].

Figure 3 displays the specific-heat-like curves defined in
Eq. (7) as a function of the crystal field � for T = 2.0. Several
system sizes up to L = 28 are shown which exhibit a clear shift
behavior. This is further quantified in Fig. 4, which presents
the FSS behavior of the pseudocritical fields �∗

L estimated as
the locations where the specific heat attains its maximum. As
usual, for second-order phase transitions a scaling behavior of
the form

�∗
L = �c + bL−1/ν (8)

is used in order to describe the approach to the thermodynamic
limit. It appears that this method of extracting pseudocritical
points from the maxima of some properly defined thermo-
dynamic quantity is capable of producing accurate estimates

FIG. 4. Shift behavior (8) of the pseudocritical fields �∗
L at T =

2.0 obtained from the peak location of the specific-heat curves shown
in Fig. 3. The solid line is a fit for linear sizes L � Lmin = 18, giving
a stable, under Lmin changes, critical field value �c = 2.523(6). The
inset illustrates the extrapolation of the effective exponent ν, obtained
by varying the cutoff Lmin of the fits, to the thermodynamic limit.

for both the critical crystal field �c and the correlation-length
exponent ν, assuming that its behavior follows the observed
shift behavior of our pseudocritical fields �∗

L. It is well
known from the general scaling theory that, even for simple
models, the equality between the correlation-length exponent
and the shift exponent is not a necessary consequence of
scaling [38]. Of course, it is a general practice to assume that
the correlation-length behavior can be deduced by the shift of
appropriate thermodynamic functions.

In fact, the solid line in the main panel of Fig. 4 represents
a fitting of the form (8), using as a lower cutoff the linear size
Lmin = 18. We have performed this type of analysis for several
values of Lmin within the range 8–18 and keeping, of course,
the upper system size fixed at Lmax = 28. For each of these fits
we have estimated an effective value of the correlation-length
exponent, which is plotted in the inset of Fig. 4 as a function
of the inverse lower cutoff, i.e., the parameter 1/Lmin. A linear
extrapolation to the infinite-volume limit provides an estimate
of ν = 0.62(4), which within error bars is compatible with the
Ising universality exponent ν = 0.6304(13) [39], as expected.
Regarding the value of the critical field, we obtain the estimate
�c(T1 = 2.0) = 2.523(6), which remained quite stable under
the switching of the lower cutoff during the fitting procedure.
Thus, up to this point we have verified through a rather
different, “orthogonal” route the expected Ising universality
in the second-order phase transition regime of the 3D BC
model.

We now move on to the main objective of this work,
the discussion of the characteristics of the transition in the
first-order regime and its dimensional scaling behavior. Let
us point out here before discussing our findings that crossing
the boundary at the first-order transition regime at a fixed
temperature is an orthogonal approach to the fixed-field ansatz.
One advantage in the case of the BC model is a broad
temperature range with a first-order transition in comparison
to a small � range.

As we discussed above, we have obtained numerical data
at two temperatures in the first-order regime of the model,
T2 = 1.0 and T3 = 0.9. A nice illustration of the first-order
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FIG. 5. Specific-heat curves as a function of the crystal field �

at T = 1.0 and two system sizes L = 8 (dashed line) and 12 (solid
line). The inset illustrates a typical first-order-like specific-heat curve
for a system with linear size L = 28 on a double logarithmic scale.

character of the transition at these temperatures is shown in
Fig. 5, where we plot the specific-heat curves obtained from
Eq. (7) for T = 1.0 and two system sizes, L = 8 and L =
12 (and L = 28 in the inset on a double logarithmic scale).
Clearly, a sharp peak is observed, which becomes much more
pronounced with increasing system size.

Following a similar analysis as above, we study now the
scaling of the pseudocritical fields �∗

L obtained from the sharp
specific-heat peaks. In this case we would expect a scaling of
the form

�∗
L = �∗ + bL−d , (9)

where d = 3 is the dimensionality of the lattice and �∗ the
transition field. The above shift behavior of the pseudocritical
fields �∗

L for both temperatures T = 1.0 and T = 0.9 in the
first-order regime of the phase diagram is shown in Fig. 6 as a
function of the inverse volume of the system. The solid lines are
linear extrapolations to the infinite-volume limit (for a clearer

FIG. 6. Shift behavior (9) of the pseudocritical fields �∗
L obtained

from the peak location of the specific-heat curves (a sample of which
is shown in Fig. 5) for both temperatures T = 1.0 and T = 0.9 in
the first-order regime of the phase diagram. The obtained transition
fields �∗ are given in the main text. The inset is a mere enlargement
of the ∼L−d approach of the pseudotransition points �∗

L to L → ∞
for the temperature T = 1.0.

FIG. 7. Simultaneous fitting of the specific-heat maxima at both
temperatures in the first-order regime. The expected ∼Ld scaling
behavior is obtained as can be clearly seen.

illustration of the linear behavior, see the corresponding inset).
The obtained transition fields �∗ are 2.944(5) and 2.964(6) for
T = 1.0 and 0.9, respectively.

As another important aspect of the first-order regime in
the phase diagram of the model, we study the scaling of the
specific-heat maxima in Fig. 7. In particular, we plot the FSS
behavior of the peaks for both temperatures considered in
this regime, where the two solid lines show a simultaneous
fitting attempt of the form C∗

L ∼ Lp, meaning that the two data
sets share the same exponent during the fitting procedure. Of
course, in a standard first-order phase transition, the exponent
p is expected to be equal to the dimensionality d of the
system, which is 3 in our case. The result for the exponent
p of a simultaneous fit to the data for both temperatures with
χ2/dof ≈ 0.8 is p = 3.00(2), which is in excellent agreement
with the theoretical expectation p = d = 3.

Further, to the above successful study of criticality
in the second-order regime of the model, it is now clear that
the numerical method and scaling approach implemented in
the present paper is able to capture as well the first-order
characteristics of the transition within good accuracy. This
latter fact is of particular importance as we are dealing with the
low-temperature, first-order regime of the BC model, where
it is common knowledge that most numerical methods fail to
produce reliable estimates of transition points and criticality.
Thus, the current method could be easily stretched to produce
an accurate approximation of the phase boundary line for
values of the crystal field � within the regime [�t,3].

The multicanonical method allows us to directly estimate
the barrier associated with the suppression of states during the
first-order phase transition, as shown in Fig. 2. Considering
distributions with two peaks of equal height, i.e., two equally
probably states, leads to the formulation of a free-energy-like
barrier in the E� space,

B = 1

2β�
ln

(
Pmax

Pmin

)
eqh

, (10)

where Pmax and Pmin are the maximum and the local minimum
of the distribution P (E�), respectively. The resulting barrier
connects a spin-0 dominated regime (E� small) and a spin-±1
dominated regime (E� large). This shows large similarities
to the Ising (lattice gas) model and the according droplet-strip
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FIG. 8. Scaling of the barrier height B for all considered tem-
peratures T � Tt. This barrier may be associated with the transition
from a spin-0 dominated to a spin-±1 dominated regime (see Fig. 2).
Then B/L2 plays the role of an interface tension for spin-0 strips.

transition [40,41]. Thus, the association with condensation and
strip formation of spin-0 clusters seems natural and we would
expect a scaling behavior in 3D as B/L2 = σ + c1L

−2 +
O(L−4) possibly with higher-order corrections [42]. Figure 8
shows B/L2 as a function of L−2 for T3 = 0.9, T2 = 1.0, and
Tt = 1.4182 with fits of the data including the first correction
and up to the third corrections. While higher-order corrections
describe the systematic dependence of the data better, the
L → ∞ extrapolations are consistent within error bars for both
fits, yielding the estimates σ3 = 0.0774(1) and σ2 = 0.0540(2)
for T3 = 0.9 and T2 = 1.0, respectively. In the vicinity of the
tricritical point, at Tt = 1.4182, the extrapolation yields σ ≈ 0,
indicating, as expected, that the interface tension vanishes in
the thermodynamic limit.

FIG. 9. Critical aspects of the 3D BC model at the tricritical
point proposed in Ref. [14]: Tt = 1.4182. (a) Shift behavior of �∗

L

obtained from the location of the specific-heat peaks. The solid line
is a power-law fit of the form (8) for L � Lmin = 20. The inset
illustrates the infinite-volume extrapolation of the correlation-length
effective exponent by varying the lower cutoff Lmin of the fits.
(b) Scaling behavior of the specific-heat peaks again for the larger sys-
tem sizes. The corresponding inset shows an infinite-volume extrapo-
lation of the effective exponent ratio α/ν using the same procedure as
in (a).

In the last part of this section we discuss some scaling
results in the vicinity of the tricritical point of the 3D BC
model [3]. We have performed additional simulations by
fixing the temperature at the tricritical estimate Tt = 1.4182, as
suggested by Deserno [14], crossing again the phase diagram
along the crystal-field axis. The results and relevant FSS
analysis are given in Fig. 9, where one can clearly observe
the departure from the Ising second-order universality class
to the tricritical one, at least in terms of the estimated
critical exponents. In particular, in panel (a) of this figure
we present the shift behavior of �∗

L obtained from the location
of the specific-heat peaks at the above defined temperature.
The solid line is a power-law fitting of the form (8) for
L � Lmin = 20 and the estimate we obtain for the relevant
(tricritical) crystal-field value is �t = 2.8446(3). This latter
value compares very well to the value 2.844 79(30) proposed
by Deserno, using an empirical scaling of the coordinates
of a latent-heat-like quantity of the model. The inset of
panel (a) illustrates correspondingly the infinite-volume ex-
trapolation of the correlation-length effective exponent by
varying the cutoff Lmin during the fitting procedure, as also
performed in the analysis within the second-order regime of
the model (see Fig. 4). The obtained value of ν = 0.517(37) is
clearly different from that of the standard second-order Ising
universality class and, within error bars, compatible to the
theoretical expectation of the Ising tricritical universality value
of ν = 0.5 [3,16]. This result indicates that the estimate of
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Deserno [14] for the location of the tricritical point in the
temperature–crystal-field plane is indeed quite accurate, and,
second, it provides a strong test in favor of the implemented
numerical and scaling scheme of the present paper. Further, to
these results, we present in Fig. 9(b) the scaling behavior of the
specific-heat peaks C∗

L, following the scaling law C∗
L ∼ Lα/ν .

The solid line is a power-law fit of this form, again for the
larger system sizes, and the corresponding inset illustrates the
infinite-volume extrapolation of the effective exponent ratio
α/ν. This analysis leads to an estimate α/ν = 0.98(4), again
very close to the expected Ising tricritical universality value of
α/ν = 1 [3,16].

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have presented a numerical study of the 3D
BC model defined on a simple cubic lattice. By implementing
a variant of the multicanonical method, we have performed
simulations of the model keeping a constant temperature and
crossing the phase boundary along the crystal-field axis. In this
way we have obtained numerical data for several temperatures
in both the first- and second-order regime of the model, as
well as in the vicinity of the tricritical point. A standard FSS
analysis, mainly based on a properly defined specific-heat-like
quantity, provided us with precise estimates for the transition
points in both regimes of the phase diagram and with a clear
verification of the expected ∼Ld scaling behavior and the Ising
universality class in the first- and second-order regimes of the
model, respectively.

An interesting feature of our study is related to the fact that
we have been able to probe efficiently the low-temperature
first-order regime of the phase diagram of the BC model, a
rather tricky numerical task, and obtain accurate estimates
of transition points in the regime of strong crystal fields.
Using the multicanonical method, and hence simulating
otherwise strongly suppressed states, allowed us to measure
the associated free-energy-like barrier in the first-order regime
up to the tricritical temperature. This barrier may be related
to the interface tension for spin-0 droplets/strips, which we
showed vanishes as one approaches the tricritical point from
the first-order regime. Moreover, further numerical simulations
performed at the tricritical temperature Tt = 1.4182, proposed
by Deserno [14], indicated that this original estimate is
rather accurate, verifying at the same time the expected
Ising tricritical exponent values of ν = 0.5 and α/ν = 1 from
infinite-volume extrapolations of our effective exponents.

A further asset of the proposed numerical and scaling
schemes is that it opens a new window for revisiting the
effect of disorder in first-order phase transitions in both
2D and 3D, where a unified approach to universality is
still missing. For instance, although it is known that in 2D
under the presence of bond disorder the ex-second-order
regime of the BC model falls into the universality class of
the corresponding random Ising model along the lines of
the strong universality hypothesis [18], the same is not true
for the ex-first-order regime. Interestingly enough, for the
ex-first-order regime different results have been obtained for
different lattice geometries [18,20]. The situation in 3D is even
more ambiguous, where one has to be also careful with respect
to the diffused amount of disorder in the system in order
to secure the switching to a continuous transition [43,44].
A recent study of the random version of the 3D BC model
suggested a possible new universality class at the ex-first-order
regime, different from that at the ex-second-order regime [19],
an interesting finding if one considers that the two transitions
are between the same ferromagnetic and paramagnetic phases.
Yet, the authors of Ref. [19] clearly underlined the need for a
more sophisticated approach (in both numerical and scaling
terms) in order to tackle efficiently the low-temperature
disorder-induced continuous transition regime of the model.

To conclude, using as a platform the BC model that
shows the unique feature of having continuous and first-order
transition lines in its phase diagram, we believe that the practice
followed in the present paper applied over a wide range of
disorder-strength values and temperatures will provide a better
understanding of the effect of disorder in spin systems. Using
the parallelized version of the multicanonical method and
crossing the phase boundary along the crystal-field axis, we
expect to be able to study systematically the universality class
and scaling corrections at the disorder-induced, second-order
phase transition of the BC model, the shift behavior of the
tricritical point as a function of the disorder strength, and other
relevant open questions. Research in this direction is currently
under way.
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