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Random-cluster multihistogram sampling for the q-state Potts model
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Using the random-cluster representation of theq-state Potts models we consider the pooling of data from
cluster-update Monte Carlo simulations for different thermal couplingsK and number of states per spinq.
Proper combination of histograms allows for the evaluation of thermal averages in a broad range ofK andq
values, including noninteger values ofq. Due to restrictions in the sampling process correct normalization of
the combined histogram data is nontrivial. We discuss the different possibilities and analyze their respective
ranges of applicability.
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I. INTRODUCTION

During the last decade the question of how to make m
efficient use of the data sampled during a Monte Carlo~MC!
simulation has received an increasing amount of attent
The idea ofreweighting@1# of time-series data from a singl
canonical simulation at a given fixed value of a coupli
parameter~i.e., most commonly temperature or magne
field! to nearby regions of the coupling-parameter space,
lows for the analysis of thermal averages as continuous fu
tions of external parameters and thus a much more pre
determination of extremal, pseudocritical points. As an
tension of this, the combination of data from simulations
different points in the coupling-parameter space, commo
known asmultihistogram technique@2#, in principle, allows
to get accurate estimates for thermal averages over a ma
scopical region of couplings from a relatively small numb
of simulations~that, however, generally has to be increas
with the size of the system!.

The basic problem with collapsing data from differe
simulations is that of finding the correct relative normaliz
tion of the single histograms. Consider the sampled ene
histogramĤKi

(E) of, e.g., an Ising model simulation at th

coupling Ki5Jb i , consisting ofN energy measurements
The thermal average of an observableA(E) at Ki is just
given by the time-series average in the importance-samp
scheme and thus insensitive to the value of the parti
function at that point. Combining two histograms, howev
amounts to adding up the temperature-independent exp
sions,

ZKi
~ĤKi

~E!/N!eKiE ~1!

for different simulationsi, where the partition functionZKi

appears as a normalization constant. Thus, for correct r

*Electronic address: weigel@itp.uni-leipzig.de
†Electronic address: janke@itp.uni-leipzig.de
‡Electronic address: huck@phys.sinica.edu.tw
1063-651X/2002/65~3!/036109~11!/$20.00 65 0361
st

n.

l-
c-
se
-
t
y

ro-
r
d

-
y

g
n
,
s-

la-

tive normalization of the histograms to be combined, one
to know the ratio of partition functionsZKi 1

/ZKi 2
or, equiva-

lently, the differences in the free energy densitiesf Ki 1
2 f Ki 2

at the simulated couplingsKi . In Ref. @2# this problem has
been solved by an iterative solution of self-consistency eq
tions for the free energy differences at adjacent simulat
couplingsKi .

Since the combination given in Eq.~1! is nothing but an
estimator for the density of~energy! statesV(E), multihis-
tograming data analysis amounts to estimating the densit
states of the variable that is thermodynamically conjugate
the considered coupling parameter. Going to the rando
cluster representation of the Potts model, i.e., its interpr
tion as correlated percolation model@3–5#, the relevant den-
sity of states is given by the numberg(b,n) of bond
configurations withb bonds andn clusters on the lattice
Apart from gaining control overtwo parameters, the therma
coupling K and the number of statesq, this language sug-
gests the use of cluster estimators for thermal averages
correlation functions, which are known to yield a varian
reduction in certain situations@6#. One of us@7,8# has pro-
posed a multihistogram technique for theq-state Potts mode
and simulations at different temperatures making use of
sampling of cluster decompositions of the lattice as they
cur in the Swendsen-Wang cluster-update algorithm@9#.
There, the relative normalization of the individual hist
grams at couplingsKi is accomplished by making use of th
known absolute number of configurations withb active
bonds on the lattice, which is just given by the binomial (b

E),
E being the total number of bonds of the lattice. While th
method appears advantageous at first sight and gives
results for the cases of percolation (q→1) @10# and the Ising
model (q52) @8#, we find that this procedure is not the be
choice of normalization for simulations of Potts models w
q larger than 3 or 4 and propose a different approach
normalization to circumvent this problem.

The outline of the paper is as follows. In Sec. II we rest
the multihistogram approach of Ref.@8# in the random-
cluster representation~‘‘RC histograming’’!, which was
originally formulated for simulations at fixedq only, and
©2002 The American Physical Society09-1
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generalize it to simulations of multipleq values. Applying it
to the q510 Potts model in two dimensions we find larg
deviations from the expected results. As an alternative
Sec. III we propose an adaptively normalized RC multih
tograming ansatz. We discuss details of its implementa
and present a comparative reweighting analysis for thq
510 case. For energy-related observables we also com
histograming in the random-cluster language to the samp
of theenergydensity of states in the well-known framewo
of histograming in the energy/magnetization language~‘‘EM
histograming’’! @2#. Comparing both methods, in Sec. IV w
track down the observed deviations with the first ansatz to
a result of the application of the above mentioned normal
tion condition. This problem can thus be resolved by
second ansatz. Finally, Sec. V contains our conclusions.

II. RC HISTOGRAMS AND ABSOLUTE NORMALIZATION

Consider the Hamiltonian of theq-state Potts model in
zero magnetic field,

H52J(
^ i , j &

d~s i ,s j !, s i51, . . . ,q, ~2!

on a general graphG with N sites andE bonds. Transforming
to the random-cluster representation@3#, the partition func-
tion becomes

Z[(
$s i %

expFK(
^ i , j &

d~s i ,s j !G5 (
G8#G

~eK21!b~G8!qn~G8!,

~3!

where the sum runs over all bond configurationsG8 on the
graph~subgraphs!, andK5bJ denotes the thermal coupling
Notice that the formulation~3! in contrast to that of Eq.~2!
allows for a natural continuation of the model tononinteger
values of the parameterq. Using the subgraph expansion
the q-state Potts in external field, one of us@5# has shown
that theq-state Potts model can be considered as a bo
correlated percolation model~BCPM! with bond occupation
probability p512e2K. Eq. ~3! can be rewritten as

Zp,q~G!5eKE (
G8#G

pb~G8!~1-p!E2b~G8!qn~G8!

5eKE(
b50

E

(
n51

N
g~b,n!pb~12p!E2bqn, ~4!

whereg(b,n) denotes the number of subgraphs ofG with b
activated bonds andn clusters resulting therefrom. Thi
purely combinatorial quantity corresponds to the density
states of the BCPM.

The Swendsen-Wang cluster-update algorithm gener
bond configurations drawn from the equilibrium canonic
distribution of this model. Thus, the probability for the o
currence of a subgraph withb bonds andn clusters is given
by

Pp,q~b,n!5Wp,q
21~G!g~b,n!pb~12p!E2bqn, ~5!
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which in turn is the expectation value of the normaliz
sampled histogram of bond configurations, i.e.,Pp,q(b,n)
5^Ĥp,q(b,n)/N&, whereN denotes the length of the tim
series of measurements. Here, we separated the common
tor exp(KE) from the partition function,

Zp,q~G!5eKEWp,q~G!. ~6!

An estimator for the density of statesg(b,n) is, therefore,
given by

ĝ~b,n!5Wp,q~G!
Ĥp,q~b,n!

pb~12p!E2bqnN
. ~7!

Since the reduced partition functionWp,q(G) is a priori un-
known, the correct normalization of this estimator is n
known at the beginning. Probably the most obvious way
fixing the normalization would be to estimate the reduc
partition functionWp,q(G) directly from Eq.~7!. One can do
better than that, however, by considering the accumula
densityg(b), which is obviously just a binomial@7#,

g~b!5(
n

g~b,n!5S E
bD . ~8!

Imposing this restriction on the estimateĝ(b,n) also, one
arrives at

Ĉp,q~b![
Ŵ̃p,q~G!

pb~12p!E2bN
5

S E
b
D

(
n

Ĥp,q~b,n!q2n

, ~9!

so that the absolute values ofĝ(b,n) are now fixed byE
independent normalization conditions, one for each num
of active bondsb. Thus we have the following estimate fo
the density of states@8#:

ĝ~b,n!5Ĉp,q~b!Ĥp,q~b,n!q2n. ~10!

Now, we want to combine the estimatesĝ( i )(b,n) from
several simulations at different parameters (pi ,qi), i.e., we
want to do multihistograming in both parameters,p and q.
Then, we have

ĝ~b,n!5(
i

a i~b,n!ĝ~ i !~b,n!, (
i

a i~b,n!51. ~11!

Since we want to minimize the varianceŝ2@ ĝ# of the final
estimate and the different simulations are statistically in
pendent, the correct choice of the weightsa i obviously is
given by

a i~b,n!5
1/s2@ ĝ~ i !~b,n!#

(
i

1/s2@g~ i !~b,n!#

. ~12!

From Eq.~10! we get the estimate
9-2



a-

e
su

to

h
uc
k

e
en
la-
es

y

f a

for

ters

ting
be

d

e
y

RANDOM-CLUSTER MULTIHISTOGRAM SAMPLING FOR . . . PHYSICAL REVIEW E 65 036109
ŝ2@ ĝ~ i !~b,n!#5Ĉpi ,qi

2 ~b!qi
22nŝ2@Ĥpi ,qi

~b,n!#

'Ĉpi ,qi

2 ~b!qi
22nĤpi ,qi

~b,n!, ~13!

such that the variance-optimized estimate forg(b,n) be-
comes

ĝ~b,n!5

S E
b
D(

i
(
m

Ĥpi ,qi
~b,m!qi

2mqi
n

(
j

F(
n

Ĥpj ,qj
~b,n!qj

2nG 2

qj
2n@Ĥpi ,qj

~b,n!#21

.

~14!

In writing this expression we allow for several approxim
tions: first, we treatĈpi ,qi (b) as a parameter in Eq.~13! in-
stead of taking its own variance into account; this is justifi
by the clear suppression of variance of this quantity as a
as compared to the the variance of its summandsĤpi ,qi

(b,n).

Second, we takeŝ2@Ĥ(b,n)#5Ĥ(b,n), i.e., we treat the in-
dividual bins~b,n! as independently distributed according
an uncorrelated 1/N statistics, which will in general not be
exactly fulfilled. Since those assumptions only affect t
variance of the final estimate, however, and do not introd
a bias, we consider them justified. Finally, we do not ta
autocorrelations between successive measurements~b,n! into
account, i.e., we assume here and in the following that m
surements in the sampling process are taken with a frequ
around 1/t int , wheret int denotes the integrated autocorre
tion time, resulting in an effectively uncorrelated time seri

From the partition function Eq.~4! we infer the following
cluster-language estimators for the free energy densitf
5F/N, the internal energy per siteu5U/N and specific
heatcv5Cv /N,

f̂ 52
1

KN ln Ẑp,q~G!,

û5
1

pN ^b& ĝ ,

ĉv5
K2

p2N @Š~b2^b& ĝ!2
‹ĝ2~12p!^b& ĝ#, ~15!

cf. the Appendix. Here, the estimated expectation value o
observableO(b,n) is defined as

^O~b,n!& ĝ[Ẑp,q
21~G!eKE(

b50

E

(
n51

N
ĝ~b,n!pb~12p!E2b

3qnO~b,n!. ~16!

For the evaluation of magnetic observables one has
distinguish percolating clusters, denoted by indicesp, from
nonpercolating, finite clusters, denoted by indicesf. Let
$c(G8)% be the set of clusters of a subgraphG8 of the lattice
03610
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and nc(G8) the number of sites in clusterc of G8. Then,
consider the following microcanonical averages:

m1
p~b,n![

1

Ng~b,n! (
G8#G, b~G8!5b,

n~G8!5n

(
$cp~G8!%

nc
p~G8!,

~17!

i.e., the average number of sites in percolating clusters
subgraphs withb active bonds andn clusters,

m2
p~b,n![

1

N 2g~b,n! (
G8#G, b~G8!5b,

n~G8!5n

F (
$cp~G8!%

nc
p~G8!G2

,

~18!

i.e., the mean square number of sites in percolating clus
for those subgraphs, and

m3
f~b,n![

1

Ng~b,n! (
G8#G, b~G8!5b,

n~G8!5n

(
$cf~G8!%

@nc
f~G8!#2,

~19!

i.e., the mean squared sum of the sizes of nonpercola
clusters. These microcanonical averages obviously can
estimated by adding($cp(G8)%nc

p(G8) to M̂1,p,q
p (b,n) for

each bond configurationG8 with $b(G8)5b, n(G8)5n%,
where nc

p(G8) should be taken 0 for nonpercolating bon
configurations, adding @($cp(G8)%nc

p(G8)#2/N to

M̂2,p,q
p (b,n), and adding($cf(G8)%@nc

f(G8)#2 to M̂3,p,q
f (b,n)

for each such observed configuration. Then, if we define

Ĥ~b,n!5 (
pi ,qi

Ĥpi ,qi
~b,n!,

M̂1
p~b,n!5 (

pi ,qi

M̂1,pi ,qi

p ~b,n!,

~20!

M̂2
p~b,n!5 (

pi ,qi

M̂2,pi ,qi

p ~b,n!,

M̂3
f~b,n!5 (

pi ,qi

M̂3,pi ,qi

f ~b,n!,

we have the following estimates form1
p(b,n), m2

p(b,n), and
m3

f(b,n):

m̂1/2/3
p/f ~b,n!5

M̂1/2/3
p/f ~b,n!

NĤ~b,n!
, ~21!

which, finally, result in the following expressions for th
~zero-field! magnetizationm̃ and the magnetic susceptibilit
x̃,

m̂̃5
q21

q
^m̂1

p~b,n!& ĝ1
1

q
,

9-3



m

e
h

-

d
de

en

n-
th

r-
/

u
in

to
al
r
i

d
e
h-

al
ot
al
ot
le

th

fo

st

le
th

nal

-
is

im-

of
o-

act
.

MARTIN WEIGEL, WOLFHARD JANKE, AND CHIN-KUN HU PHYSICAL REVIEW E 65 036109
x̂̃5N S q21

q D 2

@^m2
p& ĝ2^m1

p& ĝ
2#1

q21

q2 ^m3
f& ĝ , ~22!

cf. the Appendix. Note, that we simply add up histogra
from different simulations in Eqs.~20! and ~21! without us-
ing any reweighting factors inp andq. This is correct since
the conditional probability of the occurrence of, say, a giv
number of sites in percolating clusters in a subgraph witb
active bonds andn clusters does no longer depend onp and
q. The order parameterm of the Potts model is usually de
fined as@14#

m5
qm̃21

q21
, ~23!

and the corresponding, rescaled susceptibility isx5@(q
21)/q#2x̃.

As a first comparative test for the method we performe
Swendsen-Wang cluster MC simulation for the Ising mo
case (q52) on a smallN5162 lattice with periodic bound-
ary conditions. We gathered histograms from nine differ
simulations at the couplingsKi50.1,0.2, . . . ,0.8 andK
5Kc5 1

2 ln(11&), where the couplings are given in the la
guage of the Ising model in this case, i.e., are half of
couplings of the correspondingq52 Potts model. Each run
sampled 2175131 072 bond configurations resulting in co
responding time series of~b,n! samples and of the energy
magnetization pairs~E,M! for comparison with the EM his-
tograming method. Thus, any differences in the results m
be solely due to the method of data analysis, the underly
simulation data being exactly identical. For the EM his
grams throughout this paper we use a multihistogram an
sis according to Ref.@2#, very similar to that presented fo
the RC histograms in Sec. III. Figure 1 shows the results
comparison to the exact expressions forF andCv on square
lattices as given by Kaufman@15# and analyzed by Ferdinan
and Fisher@11#. Statistical errors for both analysis schem
were evaluated using the ‘‘jackknife’’ error estimation tec
nique @12#. The relative deviations (Ĉv2Cv)/Cv from the
exact result are noticeably larger for the RC histogram an
sis, however, in agreement with statistical errors in b
cases, cf., Fig. 1~b!. The same holds true for the intern
energy U given by the different estimates, which is n
shown in Fig. 1. Note that for the energy related observab
from Eq. ~15! only the limiting distribution Pp,q(b) is
needed, which, in general, has a different width than
distribution of energiesPp,q(E), thus leading to different
variances.

In fact, by inspection of the random-cluster expression
the specific heat Eq.~15! and comparison with its definition
in the energy language asCv5K2(^E2&2^E&2) we can infer
the following relation between the variances of energy e
mates in the RC and EM schemes:

sRC
2 ~U !

sEM
2 ~U !

512K2
12p

p

U

Cv
>1 ~24!

Thus, energy estimates from RC histograms are always
precise than those from EM histograms, regardless of
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temperature. Figure 2~a! shows the ratio of jackknife-
estimated variances of the two different estimates of inter
energy, compared to the result from Eq.~24! with the exact
expressions forU and Cv for the q52 case inserted@11#.
Note, that from Fig. 2~a! this quantity seems to have ex
tremely small finite-size corrections. As a reminder, th
shows clearly that cluster estimators are not always

FIG. 1. Results from the RC and EM multihistogram analyses
time series from nine cluster update simulations of the tw
dimensionalq52 Potts model on aN5162 lattice. ~a! Free energy
density~left scale! and specific heat~right scale! as a function of the
couplingK5bJ as compared to the exact solution of Ref.@11#. ~b!
Relative deviation of the results for the specific heat from the ex
solution for both methods.~c! Relative deviation for the free energy
All data shown are rescaled from theq52 Potts model to the Ising
model formulation to fit the results from Ref.@11#.
9-4
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RANDOM-CLUSTER MULTIHISTOGRAM SAMPLING FOR . . . PHYSICAL REVIEW E 65 036109
proved estimators@16#, but sometimes ‘‘deteriorated estima
tors.’’ Note, however, that this effect will decrease with i
creasing number of statesq, at least in the transition region
since the singularity inCv sharpens in this limit, whereas th
energiesU always stay in the range 0<2U/N<2. For the
q510 model is has been observed that at the transition p
Pp,q(b) is almost indistinguishable fromPp,q(E), when suit-
ably rescaled@17#. The minimum of the exact curve of Fig.
at the critical point is somewhat in contrast to the usual
tion that cluster estimators work best off criticality@6#; this
result, however, applies to the spin-spin correlation funct
at medium and long distances and to magnetic observa
like the susceptibility, which is the integral of the correlatio
function, whereas the internal energyU constitutes the ex-
treme short distance limit of this quantity. For the magne
observablesm andx the situation is reversed, the variance
the RC estimators being strongly reduced as compared to
EM estimators, cf., Fig. 2~b!. Note that in contrast to the EM
case, the RC estimators provide a single consistent defin

FIG. 2. Ratio of standard deviations for estimates of~a! the

internal energyU and ~b! the spontaneous magnetizationM̃ of the
q52 Potts model on aN5162 lattice and RC and EM histogram
analyses as a function of the couplingK5bJ. The variances are
estimated by a ‘‘jackknife’’ time series analysis@12#. The solid line
of ~a! shows the exact result of Eq.~24! and Ref.@11#, the dashed
line that forN→` from Ref.@13#. In ~b! we use the definition~A9!
for K,0.8 and~A8! for K>0.8.
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of m and x for both, the broken and unbroken phases,
Appendix.

For the free energy, on the other hand, deviations for
RC method are by far smaller than those of the EM meth
cf., Fig. 1~c!. Moreover, deviations are not covered by stat
tical errors in the latter case, a fact we will comment on la
in Sec. III. In the EM caseF is being fixed by making con-
tact with the noninteracting limitK50, respectively,p50,
where

Zp50,q~G!5(
E

V~E!5qN, ~25!

so that2KF(p50)/N5 ln q. This equation corresponds t
the normalization condition Eq.~8!. It is obvious that having
a normalization condition for each numberb of active bonds
and, therefore, implicitly, for each~microcanonical! tempera-
ture in the RC case allows for accurate estimation of the f
energy even far away fromK50, whereas for EM histo-
grams the results deteriorate with the distance from the o
normalization pointK50. Thus, for sampling free energie
the RC multihistogram technique normalized by Eq.~8!
seems to be a good choice.

As a slightly less trivial example, we performed simul
tions for theq510 Potts model on the same lattice, whic
exhibits a strongly first-order phase transition. It is w
known that cluster algorithms are not efficient to reduce
‘‘supercritical’’ ~exponentially strong! slowing down of the
local MC dynamics at first-order transitions. For the sm
lattice under consideration, however, autocorrelation tim
are still quite moderate, so that one gets reliable results w
out having to resort to more sophisticated methods such
multicanonical simulations@17,18#. We gathered data from
11 single-histogram simulations at couplingsKi
50.8,0.9, . . . ,1.8 with 22051 048 576 measurements eac
Figure 3 shows the quite astonishing results for the inter
energy from this simulation data using the analyses in the

FIG. 3. Internal energy of the two-dimensionalq510 Potts
model on aN5162 square lattice with periodic boundary cond
tions as given by the RC and EM multihistogram analyses fr
simulations for different thermal couplingsK. The transition point
of the infinite system is given byKt5 ln(11A10)'1.426@14#.
9-5
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MARTIN WEIGEL, WOLFHARD JANKE, AND CHIN-KUN HU PHYSICAL REVIEW E 65 036109
and EM languages, respectively. Naturally, we do not h
exact results to compare with in this case; nevertheless
results from the EM analysis are completely in agreem
with our expectations and also well compatible with resu
from previous simulations@19#. So, obviously, the results
from the RC histogram analysis are strikingly wrong–and
a way that is clearly not covered by the present statist
errors. Obviously, the results for the specific heat, which
not shown, look even worse, with a pronounced, unphys
double peak resulting from the deviations in internal ene
shown in Fig. 3.

Since as one of its major strengths in the RC approach
have the possibility of reweighting in the parameterq also, as
a first clue to the reason for this conspicuous failure we sh
the outcome of using theq52 simulation data from above
for determining the internal energy of theq510 case, cf.,
Fig. 4. The agreement with the direct EM analysis of theq
510 simulations is remarkably good considering the la
distance inq between the simulation and analysis poin
Comparing Figs. 3 and 4 it is quite natural to suspect that
application of the normalization condition~8! is not a proper
choice for simulation data from largerq models.

III. RC HISTOGRAMS AND ADAPTIVE NORMALIZATION

To understand this normalization problem let us sho
go back to the sampling of the energy density of statesV(E)
for the case of the two dimensionalq52 ~Ising! model.
Here, exact results are not only available for thermal av
ages, but forV(E) itself @20#. Using theK50 normalization
condition ~25!, a single-histogram estimator for the dens
of states in the energy language would be given by

V̂~E!52N ĤK~E!eKE

(
E

ĤK~E!eKE

. ~26!

FIG. 4. Internal energy of theq510 Potts model on aN5162

square lattice, reweighted from theq52 model simulations shown
in Fig. 1 using multiple RC histograms according to Eq.~14!. The
q510 results from the EM multihistogram analysis are shown
comparison.
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This works quite well in the high-temperature phase and
small lattices. For lower temperatures, however, the his
gram loses contact with the normalization pointK50, result-
ing in large deviations from the correct normalization, c
Fig. 5. Clearly, each simulation samples only a rather sm
window of energy space; from the exponential in the d
nominator of Eq. ~26!, however, configurations near th
maximal energyE52N receive the largest weight in th
sum, so that missing those configurations, which is the c
for largeK, results in an exponentially wrong normalizatio
factor @linear in lnV(E)#. In other words, the absolute no
malization condition~25! reweights the histogram data to th
point K50, which will have no reliable outcome if the ove
lap between the histograms at the simulation coupling an
K50 is too small or even vanishes. Note also, that the
tistical error bars given in Fig. 5 do not reflect this fund
mental failure, although it is statistical in nature. This is d
to the fact that the usual implementation of error estimat
schemes for histograms takes the error of histogram b
without entries to be zero, whereas according to 1/N statis-
tics it should in some sense be considered infinitely large

Expecting a similar sampling-related normalization fa
ure for the RC histograms normalized by the condition~8! let
us relax this absolute normalization and apply an adap
normalization scheme as in the original EM multihistogra
ming formulation of Ref.@2#. Consider single-histogram es
timates of the partition function from simulations at (pi ,qi)
and define reduced free energiesFi as

Fi52
1

Ki
ln Zpi ,qi

~G!52E2
Fi

Ki
. ~27!

From Eq.~7! estimates of the densityg(b,n) from the single
histogramsĤpi ,qi

(b,n)[Ĥ ( i )(b,n) are given by

ĝ~ i !~b,n!5eFi
Ĥ ~ i !~b,n!

pi
b~12pi !

E2bqi
nNi

. ~28!

r

FIG. 5. Density of states for theq52 Potts model in two di-
mensions on aN5162 lattice from single-histogram cluster-upda
simulations at couplingsK50.4, 0.8, and 1.2 using the estimato
Eq. ~26!. The solid line shows the exact result of Ref.@20#.
9-6
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Once again combining these estimates in a varian
optimized way as above in Sec. II, treating theFi as param-
eters with zero variance, we arrive at the following expr
sion:

ĝ~b,n!5

(
i

Nie
2Fipi

b~12pi !
E2bqi

n

(
j

Nj
2e22Fj pj

2b~12pj !
2~E2b!qj

2n@Ĥ ~ i !~b,n!#21

.

~29!

Now, from this estimate one has the followinga posteriori
relation for computation of the parametersFi :

eFi5 (
b50

E

(
n51

N
ĝ~b,n!pi

b~12pi !
E2bqi

n . ~30!

Equations~29! and~30! form a pair of equations to be solve
self-consistently for the determination of the parametersFi ,
which can be straightforwardly iterated by plugging in t
results forFi from Eq.~29! into Eq.~30! and vice versa. One
can improve on that by applying more sophisticated iterat
schemes like, e.g., the Newton-Raphson iteration@21#. We
find, however, that the radius of convergence of this met
is quite small; therefore, we adaptively revert to the sim
iteration if the procedure leaves the Newton-Raphson c
vergence region. It is obvious that for the iteration to co
verge, one needs some overlap between theĤ(b,n) histo-
grams between ‘‘adjacent’’ simulations, i.e., at least pairw
overlap. Apart from this restriction, however, we find th
iterative scheme to be very well behaved, converging rap
in every case that fulfills the overlap condition.

To get started, we use first-guess values of theFi from
thermodynamic integration. Assume that the simulat
points (i )5(p i ,qi) are ordered such that the histograms
~i! and (i 11) have reasonable overlap; then

eFi5 (
b50

E

(
n51

N
Ĥ ~ i 21!~b,n!

Ni 21

pi
b~12pi !

E2bqi
n

pi 21
b ~12pi 21!E2bqi 21

n eFi 21

~31!

is a good starting point for the described iteration schemeF1
can be chosen arbitrarily, since the given pair of equation
obviously invariant under a global shiftFi→Fi2F1 . Thus,
we have determined the final estimateĝ(b,n) only up to a
global factor. To fix this last normalization we propose tw
different possibilities; on the one hand, we can use the
model limit, i.e., evaluateFp50,q from Eq. ~30! and use Eq.
~25! for any q,

Fp50,q5 ln Zp50,q~G!2KE5N ln q. ~32!

On the other hand, theq51 partition function also is trivial

Fp,q515 lnF (
b50

E S E
bD pb~12p!E2bG50, ~33!
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and can serve as a normalization point for arbitraryp. In
practice the best choice depends on the set of simulated
plings (pi ,qi): for large-q simulations one might want to
resort to Eq.~32!, while otherwise Eq.~33! should be the
better choice.

Now, we can reconsider the internal energy of theq510
case from above with the new, adaptively normalized R
multihistograming scheme. Figure 6 shows internal ene
and free energy from this analysis as compared to the
multihistogram approach. As far as the error estimates
concerned, we apply the jackknife process to the whole
eration run, i.e., the iteration scheme for fixing the weig
Fi is done for each jackknife block of data separately, tak
full account of statistical errors. Clearly, now the results fro
both approaches perfectly agree, the deviations of Fig
have vanished. As anticipated in Sec. II, also the cluster
timator for the internal energy performs noticeably bet
than in theq52 case, such that—at least in the critic
region—it is quite comparable in precision to the EM es
mator, cp. Fig. 7.

For the free energy it is obvious that with the adapti
normalization scheme of RC histograms we lose the es
cially high precision throughout the wholeK region obtained
by the application of the sum rule~8! in Fig. 1 for the Ising
model. To amend this, having fixed the relative normaliz
tion of the single histograms adaptively, one might consi
applying the sum rule~8! to the final resultĝ(b,n) instead of
using the normalizations Eq.~33! or Eq.~32!. This, however,
gives results looking almost identical to those shown ab
in Fig. 3, i.e., the large deviations reappear, which clea
reveals the source they are resulting from.

IV. COMPARISON OF THE METHODS

The effect of this normalization problem should also
clearly seen in the final estimates for the density of sta
g(b,n) from the two RC histograming methods. In Fig. 8 w
show a density plot of the relative differences of the es

FIG. 6. Free energy~left-hand scale! and internal energy~right-
hand scale! of theq510 Potts model on aN5162 square lattice as
computed by the adaptively normalized RC multihistogram
scheme according to Eqs.~29! and ~30!. The results from the EM
multihistogram analysis of the same data are shown for compari
9-7
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mated density of statesĝ(b,n) from the absolutely normal
ized histograming scheme of Eq.~14!, ĝ(abs)(b,n), and of the
adaptively normalized scheme of Eqs.~29! and ~30!,
ĝ(rel)(b,n), i.e., the quantity

D̂~b,n![
ĝ~abs!~b,n!2ĝ~rel!~b,n!

ĝ~rel!~b,n!
. ~34!

Note that the range of possible value pairs~b,n! is restricted
by two simple bounds in the~b,n! plane. First, starting from
the point (b50, n5N) each added bond can at most redu

FIG. 7. Ratio of standard deviations for estimates of the inter
energyU of the two-dimensionalq510 Potts model on aN5162

lattice and RC and EM multihistogram analyses as a function of
coupling K5bJ. The variances are estimated by a ‘‘jackknife
time-series analysis@12#. The RC histograms are normalized a
cording to Eqs.~29! and ~30!.

FIG. 8. Density plot of the relative differencesD̂[@ ĝ~abs!

2ĝ~rel!#/ĝ~rel! of the density of states as sampled from theq510
Potts model on aN5162 lattice by the absolutely normalized R
histograming scheme of Eq.~14! (ĝ~abs!) and the adaptively normal
ized scheme of Eq.~29! (ĝ~rel!), respectively. Dark shading indi
cates thatĝ~abs!(b,n).ĝ~rel!(b,n), and vice versa.
03610
e

the number of clusters by one, namely, by connecting t
previously unconnected clusters, i.e., one has

n>N2b. ~35!

On the other hand, starting from the ‘‘opposite’’ point (b
5E, n51) one hasbN/E bonds per site, so that for produc
ing a new cluster one must at least removeN/E bonds,

n21<
N
E ~E2b!, ~36!

or, for the square lattice,

n<N2
b

2
11. ~37!

Apart from single points near those bounds, all configu
tions within this triangle can actually appear in a Potts mo
simulation with nonvanishing probability.

Now, from Fig. 8 it is obvious, given that the estima
ĝ(rel)(b,n) is correct up to an overall factor, that the abs
lutely normalized histograming estimateĝ(abs)(b,n) gives
too large estimates forb values near the centerb5N as
compared to the other regions ofb ~dark shading in Fig. 8!.
Then, considering again the deviation in internal ene
shown in Fig. 3, its origin becomes clear: the histogra
Ĥp,q(b,n) for a simulation somewhat below the transitio
point will be centred around the lineb5bI in Fig. 8; then,
using the density of states estimateĝ(abs)(b,n) for evaluating
U, the parts of the histogram lying to the right ofb5bI will
have too large weight as compared to the valuesb,bI , thus
by Eq. ~15! resulting in a too large estimate for the intern
energyU. On the other hand, for couplings above the tran
tion point the histogram will be centred aroundb5bIII with
too large weights forb,bIII , leading to estimates forU that
are too low. Directly in the vicinity of the transition poin
deviations in normalization are symmetric with respect to
histogram, which will be centred aroundb5bII , thus leading
to an unbiased estimate forU. This is exactly the behavio
found in Fig. 3. Finally, contemplating on the reason for t
deviations in normalization shown in Fig. 8 in the first plac
it becomes obvious that they have the same origin as th
shown in Fig. 5. The exponential factorq2n from the sum
rule Eq.~9! attaches large weight to the configurations w
small numbers of clustersn; if, however, histograms miss
entries for smalln, as is the case for histograms in the tra
sition regionb'N of Fig. 8, the sumSnĤp,q(b,n)q2n will
become too small, resulting in too large normalization fa
tors Ĉp,q(b).

Thus, for the application of the sum rule~8! to the final
result from the adaptively normalized RC histogrami
scheme to work reliably, one always has to include his
grams from small-q simulations, such as percolation (q
→1) or the Ising model (q52), that produce configuration
with relatively small numbers of clustersn. To illustrate this,
we combined the data from theq52 andq510 simulations
reported above, used the histograming scheme Eqs.~29! and
~30! to get results forq510 and applied the sum rule Eq.~8!

l

e
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afterwards, i.e., the normalization of the single histogra
was found adaptively, whereas the total histogram was
malized by the sum rule~8!; this yields results for the inter
nal and free energies indistinguishable from those of the p
q510 results of Fig. 6. For the free energy, however, the s
of statistical errors is largely affected by the final normaliz
tion, cf., Fig. 9. For most of the couplings shown, the es
mate from the finally sum-rule-normalized density of sta
is up to about 10 times more accurate in terms of the sta
tical errors. The presence and size of such a gain for a g
coupling is not mainly physically motivated, but rather d
pends on the relation of the simulation points (qi ,pi) to the
points of data analysis.

V. CONCLUSIONS

We have considered multihistogram data analyses of t
series from cluster-update Monte Carlo simulations of
q-state Potts model in the random-cluster language. Gen
izing the original formulation of Ref.@8# to the case of simu-
lations of different numbers of statesq, we found the original
ansatz of absolutely normalizing the individual histogra
with a geometrical sum rule for finite-length time series
produce large deviations from the expected behavior w
applied to cases in whichq is larger than about 3 or 4 in two
dimensions. We track this error down to a mismatch betw
exponential suppression of a part of the state space~b,n! and
a simultaneous exponential enhancement of this region in
sum rule Eq.~9!. To circumvent this problem, we propose
different ansatz normalizing the histograms adaptively vi
set of self-consistency equations aiming at the minimizat
of the variance of the final estimate of the density of sta
g(b,n). Absolute normalization over the whole temperatu
region can still be maintained by making contact with t
trivial partition function of the percolation limitq→1 or by
combining large- and small-q data and applying the sum rul

FIG. 9. Ratio of standard deviations of estimates of the f
energy from the adaptively normalized RC histograming schem
Eq. ~29! with (sRC, norm) and without (sRC) a final application of
the sum rule Eq.~8! to the density of states after determining t
weights. The used time-series data includes both, theq52 and the
q510 simulations reported above.
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~8! after the adaptive normalization. This new approach d
not exhibit the limitations of the absolutely normalized a
satz to small-q simulations.

Comparing the newly introduced, adaptively normaliz
random cluster ‘‘RC’’ multihistogram technique with mult
histograming in the energy/magnetization ‘‘EM’’ languag
we can make the following statements:~a! The cluster vari-
ables~b,n! form the natural state space for the analysis of
Potts model. Using the Swendsen-Wang cluster-update a
rithm, these numbers are automatically known as a
product of the update steps; no additional measurement s
are needed.~b! The RC representation allows for reweightin
in both parameters, the thermal couplingp respectivelyK,
and the number of statesq, without systematical errors as i
the partial transformation of Ref.@22#. Especially, the mode
can be considered for the case of nonintegerq. It is easy to
combine data from simulations of differentq values to en-
hance the accuracy for largeq. ~c! Cluster estimators occu
naturally in the RC language. Although we found that sho
distance observables like the internal energy and spe
heat are sampled systematically less accurate by cluster
mators, this situation is reversed for observables sensitiv
long-range order such as the magnetization, susceptib
and correlation functions. Also, even short-range cluster
timators perform comparable to EM language estimators
larger q values, at least in the transition region. In the R
language, the magnetic observables can be defined co
tently throughout the broken and unbroken phases, cf.
Appendix.

Apart from that, the combination of data from small- an
large-q models can serve as a new method to cope with
supercritical slowing down at the first-order transitions f
large q: for sufficiently large lattices simulation runs wi
entirely stay in one of the pure phases depending on
initial configuration and boundary conditions due to ergod
ity breaking at the transition point. However, combining su
data with smaller-q simulations from the second-order o
weak first-order regime allows the adaptive normalizat
scheme to still find the correct normalization of the pu
phase histograms without real tunneling events. This
proach is similar in spirit to the simulated tempering tec
nique @23,24#.

One might also think of applying the multicanonical@18#
respectively multibondic@17# simulation approach or one o
the related techniques to the sampling of the density of st
g(b,n). Especially, application of the absolute normalizati
Eq. ~8! to this case might be of interest. This approach
currently under investigation. However, sampling the co
plete range of possible values in the~b,n! plane with suffi-
cient accuracy is found to be a computationally very d
manding problem. In contrast, in the current approach,
still stick to the physically sensible approach of importan
sampling, i.e., sampling the phase space according to
local canonical weights. Furthermore, we are able to take
advantage of the computational gain of cluster algorithm
whereas the multicanonical algorithms put forward so
employ local updates~apart from the multibondic algorithm
of Ref. @17#!.

As an interesting application of our ansatz we suggest

e
of
9-9
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MARTIN WEIGEL, WOLFHARD JANKE, AND CHIN-KUN HU PHYSICAL REVIEW E 65 036109
analysis of the tricritical pointqc , where the order of the
thermal transitions changes from second to first order
three dimensions. There has been quite some debate a
the location of this point, estimates ranging fromqc52.15
@25# to qc52.6 @26#. Furthermore, the universality clas
critical exponents etc. of this transition have not yet be
properly analyzed. A test for theqc54 case in two dimen-
sions shows that our method is well suited for such an an
sis. This problem will be considered in a forthcoming pub
cation.
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APPENDIX: CLUSTER ESTIMATORS

Consider the Potts model coupled to an external magn
field H with Hamiltonian@27#:

H52J(
^ i , j &

d~s i ,s j !2H(
i

d~s i ,1!. ~A1!

Then, the random-cluster representation of the partition fu
tion on a graphG consisting ofN sites andE edges~bonds!
is given by

Zp,q~G,B!5 (
G8#G

~eK21!b~G8!)
c

@~q21!1eBnc#

5eKE (
G8#G

pb~G8!~12p!E2b~G8!

3)
c

@~q21!1eBnc#, ~A2!

where the product runs over the set of clusters$c% of the
subgraphG8, nc is the number of sites in clusterc, K5bJ is
the thermal coupling parameter,B5bH denotes the reduce
magnetic field, andp512e2K is the probability for the ac-
tivation of bonds.

In zero field, the internal energy per siteu is then given by

u52
]

]K F ln Zp,q~G,B50!

N G52
1

N
K ]

]K
@~eK21!b#

~eK21!b
L

52
1

p K b

NL , ~A3!

which shows the close connection between theb andE dis-
tributions.

The zero-field specific heatcv follows from
03610
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c-

cv5K2
]2

]K2 F ln Zp,q~G,B50!

N G

5
K2

N
F2

1

p2 ^b&21K ]2

]K2 @~eK21!b#

~eK21!b
L G

5
K2

p2N @^b2&2^b&22~12p!^b&#. ~A4!

In the thermodynamic limit, the zero-field ‘‘magnetiza
tion’’ per site m̃5^( id(s i ,1)/N& is given by

m̃5 lim
B→01

lim
N→`

]

]B F ln Zp,q~G,B!

N G
5 lim

B→01

lim
N→`

eKE

Zp,q~G,B! (
G8#G

pb~G8!~12p!E2b~G8!

3)
c

@~q21!1eBnc#(
c8

nc8

N
eBnc8

~q21!1eBnc8

5 lim
B→01

lim
N→`

F K (
cp

nc
p

N
1

~q21!e2Bnc
p
11L

1K (
cf

nc
f

N
1

~q21!e2Bnc
f
11L G . ~A5!

Here, we split the cluster contributions of the subgraph i
percolating clusterscp and nonpercolating, finite clusterscf.
In the indicated order of taking the limits, firstN→` and
thenB→0, the factors exp(2Bnc) take the values 0 and 1 fo
percolating and nonpercolating clustersc, respectively. Thus,
we arrive at

m̃5K (
cp

nc
p

N L 1
1

q K (
cf

nc
f

N L 5
q21

q K (
cp

nc
p

N L 1
1

q
,

~A6!

which explicitly reflects the symmetry-breaking nature of t
percolating configurations. For the order parameterm, which
varies between 0 for the completely disordered state an
for the ground states, we find

m[
qm̃21

q21
5K (

cp

nc
p

N L . ~A7!

For finite lattices one can retain this definition since the n
tion of percolating and nonpercolating clusters is still w
defined. Note, that this gives a consistent definition of
order parameter throughout the disordered and bro
phases. In contrast, in the EM language one has to explic
break symmetry in the low-temperature phase, which is u
ally done by defining

m̃K.Kt
5K max

1< j <q
(

i
d~s i , j !L , ~A8!
9-10
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whereas for the unbroken phase one uses

m̃K<Kt
5K (

i
d~s i ,1!L . ~A9!

Obviously, for finite lattices, the expectation values of t
RC and EM definitions will not coincide exactly; critica
exponents, however, will of course agree.

The zero-field susceptibilityx̃ is given by

x̃5 lim
B→01

lim
N→`

]2

]B2 S ln Z~B!

N D
5 lim

B→01

lim
N→`

F2
1

NZ~B!2 S ]Z~B!

]B D 2

1
1

NZ~ ,B!

]2Z~B!

]B2 G
52Nm21 lim

B→01

lim
N→`

F K (
c

nc
2

N
1

~q21!e2Bnc11L
1N K S (

c

nc

N
1

~q21!e2Bnc11D 2L
1K (

c

nc
2

N
1

@~q21!e2Bnc11#2L G
in
a-

03610
5N S q21

q D 2F K S (
cp

nc
p

N D 2L 2K (
cp

nc
p

N L 2G
1

q21

q2 K (
cf

nc
f2

N L . ~A10!

From Eq. ~A10! one recognizes the widely used improve
cluster estimator for the high-temperature phase, namely
last term. Note, however, that the original improved estim
tor includesall clusters here instead of only the nonpercol
ing ones, which makes a difference for finite lattices. F
finite lattices, once again, from Eq.~A10! we have a single
definition for both, the unbroken and broken phases.

Alternatively defining the susceptibility corresponding
the order parameterm we get

x5S q

q21D 2

x̃

5
1

q21 K (
cf

nc
f2

N L 1NF K S (
cp

nc
p

N D 2L 2K (
cp

nc
p

N L 2G .

~A11!
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