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Random-cluster multihistogram sampling for the g-state Potts model
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Using the random-cluster representation of thetate Potts models we consider the pooling of data from
cluster-update Monte Carlo simulations for different thermal couplitgand number of states per spinp
Proper combination of histograms allows for the evaluation of thermal averages in a broad ré&hgadd
values, including noninteger values @f Due to restrictions in the sampling process correct normalization of
the combined histogram data is nontrivial. We discuss the different possibilities and analyze their respective
ranges of applicability.
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I. INTRODUCTION tive normalization of the histograms to be combined, one has
to know the ratio of partition functionZKi /ZKi2 or, equiva-
During the last decade the question of how to make most : : y e
efficient use of the data sampled during a Monte Cavi€) 51ently, the differences in the free energy densmigis; fKiz
simulation has received an increasing amount of attentiorat the simulated couplings;. In Ref.[2] this problem has
The idea ofreweighting[1] of time-series data from a single been solved by an iterative solution of self-consistency equa-
canonical simulation at a given fixed value of a couplingtions for the free energy differences at adjacent simulation
parameter(i.e., most commonly temperature or magneticcouplingsk; .
field) to nearby regions of the coupling-parameter space, al- Since the combination given in E¢L) is nothing but an
lows for the analysis of thermal averages as continuous funastimator for the density dienergy statesQ(E), multihis-
tions of external parameters and thus a much more precigegraming data analysis amounts to estimating the density of
determination of extremal, pseudocritical points. As an exstates of the variable that is thermodynamically conjugate to
tension of this, the combination of data from simulations atthe considered coupling parameter. Going to the random-
different points in the coupling-parameter space, commonlycluster representation of the Potts model, i.e., its interpreta-
known asmultihistogram techniqug?], in principle, allows tion as correlated percolation mod&5], the relevant den-
to get accurate estimates for thermal averages over a macrsity of states is given by the numbey(b,n) of bond
scopical region of couplings from a relatively small numberconfigurations withb bonds andn clusters on the lattice.
of simulations(that, however, generally has to be increasedApart from gaining control ovetwo parameters, the thermal
with the size of the system coupling K and the number of stateg this language sug-
The basic problem with collapsing data from different gests the use of cluster estimators for thermal averages like
simulations is that of finding the correct relative normaliza-correlation functions, which are known to yield a variance
tion of the single histograms. Consider the sampled energgeduction in certain situation$]. One of us[7,8] has pro-
histogramH k,(E) of, e.g., an Ising model simulation at the posed a multihistogram technique for tystate Potts model
coupling K;=JB;, consisting ofN energy measurements. and S|'mulat|ons at different terr_lperatures maklng use of the
The thermal average of an observaléE) at K, is just sampllng of cluster decompositions of the lattice as they oc-
given by the time-series average in the importance-samplin§“" in the Swe_ndsen-Wan_g c_Iuster-upda_te _a!go”tm_‘
scheme and thus insensitive to the value of the partitio] €€, the relative normalization of the individual histo-
function at that point. Combining two histograms, however,9rams at coupling&;; is accomplished by making use of the

amounts to adding up the temperature-independent expre§1OWn absolute number of configurations with active
sions, bonds on the lattice, which is just given by the bmom@)l,(

& being the total number of bonds of the lattice. While this
~ K.E method appears advantageous at first sight and gives nice
2 (Hi (B)/N)e™ D results for the cases of percolatiom 1) [10] and the Ising

] . o N . model (@=2) [8], we find that this procedure is not the best

for different simulations, where the partition functioZy,  choice of normalization for simulations of Potts models with
appears as a normalization constant. Thus, for correct relay larger than 3 or 4 and propose a different approach for

normalization to circumvent this problem.
The outline of the paper is as follows. In Sec. Il we restate

*Electronic address: weigel@itp.uni-leipzig.de the multihistogram approach of Ref8] in the random-
"Electronic address: janke@itp.uni-leipzig.de cluster representatio"RC histograming”), which was
*Electronic address: huck@phys.sinica.edu.tw originally formulated for simulations at fixed only, and
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generalize it to simulations of multiplg values. Applying it which in turn is the expectation value of the normalized
to the =10 Potts model in two dimensions we find large sampled histogram of bond configurations, iy 4(b,n)
deviations from the expected results. As an alternative, in:(ﬂpq(b,n)lm, whereN denotes the length of the time
Sec. lll we propose an adaptively normalized RC multihis-series of measurements. Here, we separated the common fac-
tograming ansatz. We discuss details of its implementatiofor expKe) from the partition function,

and present a comparative reweighting analysis for ghe

=10 case. For energy-related observables we also compare Zpyq(g)=eK5Wp,q(g). (6)
histograming in the random-cluster language to the sampling

of the energydensity of states in the well-known framework An estimator for the density of stategb,n) is, therefore,

of histograming in the energy/magnetization langué@vi given by

histograming’) [2]. Comparing both methods, in Sec. IV we

track down the observed deviations with the first ansatz to be a(b.n)=W- (G) |:|p,q(b,ﬂ) @
a result of the application of the above mentioned normaliza- gib.n)=Woq pP(1—p)¥Pg"N"

tion condition. This problem can thus be resolved by the

second ansatz. Finally, Sec. V contains our conclusions. Since the reduced partition functio, ,(G) is a priori un-
known, the correct normalization of this estimator is not

Il. RC HISTOGRAMS AND ABSOLUTE NORMALIZATION known at the beginning. Probably the most obvious way of
fixing the normalization would be to estimate the reduced

Consider the Hamiltonian of the-state Potts model in  partition functionW, () directly from Eq.(7). One can do

zero magnetic field, better than that, however, by considering the accumulated

densityg(b), which is obviously just a binomidl7],

H=—-32, 8oi,09), oi=1,...4, ) c
o g(b)=> g(b,n>=(b

on a general grap@ with A/ sites and€ bonds. Transforming "
to the random-cluster representatii®], the partition func-  |mposing this restriction on the estimafgb,n) also, one

. (8

tion becomes arrives at
z=2, exp[KE 5<oi,aj>}= 2 (ef=1)° g9, - (5
{oi} (D) g'cg . W,,4(9) b
3 Cp,q(b)E b : b ) 9
p°(1-p) N 2 g b ~n
where the sum runs over all bond configuratigiison the = p.a(P.n)q

graph(subgraphg andK = 8J denotes the thermal coupling.

Notice that the formulatlorﬁS) -in contrast to that Of. ECKZ) so that the absolute values g(b’n) are now fixed byg
allows for a natural continuation of the modelrioninteger  jndependent normalization conditions, one for each number

values of the parameter. Using the subgraph expansion of of active bondsh. Thus we have the following estimate for
the g-state Potts in external field, one of [5] has shown the density of stateks]:

that theg-state Potts model can be considered as a bond-

correlated percolation modéBCPM) with bond occupation g(b,n)=C, 4(b)H, 4(b,n)g™" (10)
b K : ' p.g p.g\t :

probability p=1—e~". Eq. (3) can be rewritten as .

Now, we want to combine the estimatg&)(b,n) from
several simulations at different parameteps,(;), i.e., we
want to do multihistograming in both parametepsand g.
Then, we have

Zpo( )= 3 P (1-p)* I
-

E N
— aKE b, b 1— £—b n, 4 .
¢ bgo 21 glb.mp1=p) . a(b,n)=> a;(b,ng"(b,n), X ai(b,n)=1. (12)

whereg(b,n) denotes the number of subgraphsgofvith b ) I o s ,
activated bonds ana clusters resulting therefrom. This Since we want to minimize the varianéé[g] of the final

purely combinatorial quantity corresponds to the density oftstimate and the different simulations are statistically inde-
states of the BCPM. pendent, the correct choice of the weiglats obviously is
The Swendsen-Wang cluster-update algorithm generatgiven by
bond configurations drawn from the equilibrium canonical o257 (b.n)]
distribution of this model. Thus, the probability for the oc- ai(b,n)= o190 ) (12)
currence of a subgraph withhbonds anch clusters is given E 1Uo?[gV(b,n)]
i

by

Pp.q(b,n) =W, (G)g(b,n)p°(1—p)*°g", () From Eq.(10) we get the estimate
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526" (b,n)]= C2 q(b)q‘zn Z[Hp (b1 and n,(G') the number of sites in cluster of G’. Then,
Y consider the following microcanonical averages:
- Cone
~Ch o (0)a #"Hy o (b,n), (13
m7(b,n)= > (G,
such that the variance-optimized estimate éfb,n) be- ' NI(D.N) 4 6 bier=b, (7o)
comes n(G")=n
17
5 N . . . .
—pan i.e., the average number of sites in percolating clusters for
(b) E, % pr (D)0 " subgraphs wittb active bonds and clusters,
g(brn)_ 2 : 1 2
2 7 —
E 2 Hy q(b.v)a; l 97 [Hp, (017 m3(b.M= R za o > niG)|,
, 9(b,N) g/ g bie)=b, | {c7(@")
(14) n(G’)=n

(18

In writing this expression we allow for several approxima- h ber of | |
tions: first, we trean o) as a parameter in Eq13) in- i.e., the mean square number of sites in percolating clusters
for those subgraphs, and

stead of taking its own variance into account; this is justified

by the clear suppression of variance of this quantity as a sum . 1 2 2 s )
i i . m3(b,n)= —=——- [ng(G"]%,
as compared to the }he vanani:e of its summ&mgjlgh(b,n). 3 Ng(bn) g g 5y, i c
Second, we také?[H(b,n)]=H(b,n), i.e., we treat the in- n(G')=n
dividual bins(b,n) as independently distributed according to (19)

an uncorrel'ated N_ statistics, which Wi||' in general not be . the mean squared sum of the sizes of nonpercolating

exactly fulfiled. Since those assumptions only affect theclusters These microcanonical averages obviously can be

variance of the final estimate, however, and do not introduce i

a bias, we consider them justified. Finally, we do not takeeSt'm""te<j by adding®cr(c)nI(G') to M7, (b,n) for

autocorrelations between successive measurerienjgnto ~ €ach bond configuratio®’ with {b(G') = b ”(G )=nj,

account, i.e., we assume here and in the following that mea¥herenc(G’) should be taken 0 for nonpercolating bond

surements in the sampling process are taken with a frequen&@nfigurations,  adding [E{mer nd(G’ )]2/N to

around 1., wherer;,; denotes the integrated autocorrela- |\7|2 q(b,n), and add|ngz{c¢(6,)}[n (G)?toM pq(b n)

tion time, resulting in an effectively uncorrelated time seriesfor each such observed configuration. Then, if we define
From the partition function Eq4) we infer the following

cluster-language estimators for the free energy denfity N N

=F/N, the internal energy per site=U/N and specific H(b,n)=p% Hpi,m(b’n)’

heatc,=C, /N, o

MI(b,n)=> M, ,(b,n),

== Kj\/lnzpq(g) Pi i 0
MZ(b,n)= MZ. . (b,n),

0 o s 0= 2, Miga (o0

LS , Mg(b,m)= 2 M, o (b,n),

&, = ozl (b= (b)) %= (1=p)(b)gl, (19 I

we have the following estimates far7 (b,n), m3(b,n), and
cf. the Appendix. Here, the estimated expectation value of ag¢(b, n):

observableD(b,n) is defined as

£ N ld _ M7 5(b,1)
~ . . Mija(b,n)= ———, (21
(O(b,m)5=2p ()& 2, 2, §(b,mp(1-p)*° v AFi(b,n)
X q"O(b,n). (16) which, finally, result in the following expressions for the

(zero-field magnetizatiorih and the magnetic susceptibility

For the evaluation of magnetic observables one has t&,
distinguish percolating clusters, denoted by indigedrom

nonpercolating, finite clusters, denoted by indicgs Let ﬁ]:E<mW(b n))%—}

{c(G")} be the set of clusters of a subgraph of the lattice q n=re g
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2.0

= a- 1 2 T m\ 2 q- 1 ¢
x=N T) [(mZ)g—(mD)5]+ _q2_<m3>§1 (22
cf. the Appendix. Note, that we simply add up histograms 9]
from different simulations in Eqg20) and(21) without us- 14
ing any reweighting factors ip andq. This is correct since é -
the conditional probability of the occurrence of, say, a given =~
number of sites in percolating clusters in a subgraph Wwith 10
active bonds and clusters does no longer depend pand osh
g. The order parameten of the Potts model is usually de-

fined as[14] 06r

& RC histograms (a)

1.8 | x EM histograms

— exact

gm—1
qg-1

and the corresponding, rescaled susceptibility yis[(q
—1)/q]%)-

As a first comparative test for the method we performed a
Swendsen-Wang cluster MC simulation for the Ising model
case (j=2) on a small\'=16? lattice with periodic bound-
ary conditions. We gathered histograms from nine different
simulations at the coupling&;=0.1,0.2...,0.8 andK
=K.=3 In(1+v2), where the couplings are given in the lan-
guage of the Ising model in this case, i.e., are half of the
couplings of the correspondirgy=2 Potts model. Each run ouk i
sampled 2’=131 072 bond configurations resulting in cor-
responding time series ¢b,n) samples and of the energy/ 01 02 03 04 05 06 07 08
magnetization pair$E,M) for comparison with the EM his- pJ
tograming method. Thus, any differences in the results must
be solely due to the method of data analysis, the underlying
simulation data being exactly identical. For the EM histo-
grams throughout this paper we use a multihistogram analy-
sis according to Ref[2], very similar to that presented for s |

the RC histograms in Sec. lll. Figure 1 shows the results in %1.0—

comparison to the exact expressions fFoandC, on square 50
lattices as given by Kaufmdri5] and analyzed by Ferdinand -2 %51
and Fishel{11]. Statistical errors for both analysis schemes ~

were evaluated using the “jackknife” error estimation tech-

nique [12]. The relative deviations@,—C,)/C, from the
exact result are noticeably larger for the RC histogram analy- -o5- |~~~ | |
sis, however, in agreement with statistical errors in both 0.1 0203 04 05 06 07 0.8
cases, cf., Fig. (b). The same holds true for the internal pI

energy U given by the different estimates, which is not
shown in Fig. 1. Note that for the energy related observableg, .o series from nine cluster update simulations of the two-

from Eq. (15 only the limiting distribution Py 4(b) IS gimensionalg=2 Potts model on a/= 16 lattice. (a) Free energy
needed, which, in general, has a different width than theensityleft scale and specific heatight scalé as a function of the
distribution of energiesP,, 4(E), thus leading to different couplingk =43 as compared to the exact solution of Rafl]. (b)
variances. Relative deviation of the results for the specific heat from the exact
In fact, by inspection of the random-cluster expression fofsolution for both methodsc) Relative deviation for the free energy.
the specific heat Eq15) and comparison with its definition All data shown are rescaled from the=2 Potts model to the Ising
in the energy language &, =K?((E?)—(E)?) we can infer model formulation to fit the results from RdfL1].
the following relation between the variances of energy esti-
mates in the RC and EM schemes: temperature. Figure (8) shows the ratio of jackknife-
) estimated variances of the two different estimates of internal
ordU) K2 1-p U _— energy, compared to the result from E84) with the exact
O'EM(U) B p C_U/ expressions fotJ and C, for the q=2 case insertedl11].
Note, that from Fig. &) this quantity seems to have ex-
Thus, energy estimates from RC histograms are always leseemely small finite-size corrections. As a reminder, this
precise than those from EM histograms, regardless of thehows clearly that cluster estimators are not always im-

: (23

% RC histograms
x EM histograms
— exact

0.2

e
]

ol
2

10° ccc e,

20l T T T T T —

o RC histograms (©)
x  EM histograms 1
— exact

L5

FIG. 1. Results from the RC and EM multihistogram analyses of

(24)
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FIG. 2. Ratio of standard deviations for estimates(a&f the

internal energyJ and (b) the spontaneous magnetizatith of the
g=2 Potts model on av=16 lattice and RC and EM histogram
analyses as a function of the couplikg=8J. The variances are
estimated by a “jackknife” time series analygis2]. The solid line
of (a) shows the exact result of ER4) and Ref.[11], the dashed
line that forAN—« from Ref.[13]. In (b) we use the definitiofA9)
for K<0.8 and(A8) for K=0.8.
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201 —

¢ EM histograms b

1.8~ | x RC histograms —
16 —

L ° i

14 -

% 1.2 _— ® —_

T 1.0 —
0.8 -
0.6 -
0.4 —
0.2+ -

| L | L | L | L | L | L |
0.6 0.8 1.0 1.2 14 1.6 1.8 2.0
By
FIG. 3. Internal energy of the two-dimensionak 10 Potts

model on aN=16 square lattice with periodic boundary condi-
tions as given by the RC and EM multihistogram analyses from
simulations for different thermal couplindgé. The transition point

of the infinite system is given big,=In(1+/10)~1.426[14].

of m and y for both, the broken and unbroken phases, cf.,
Appendix.

For the free energy, on the other hand, deviations for the
RC method are by far smaller than those of the EM method,
cf., Fig. 1(c). Moreover, deviations are not covered by statis-
tical errors in the latter case, a fact we will comment on later
in Sec. lll. In the EM casé is being fixed by making con-
tact with the noninteracting limiK=0, respectivelyp=0,
where

zp:o,q<g>=§ Q(E)= (25)

so that—KF(p=0)/N=Ing. This equation corresponds to
the normalization condition E@8). It is obvious that having

a normalization condition for each numbeof active bonds
and, therefore, implicitly, for eactmicrocanonicgltempera-
ture in the RC case allows for accurate estimation of the free

proved estimatorfl6], but sometimes “deteriorated estima- energy even far away frolk=0, whereas for EM histo-
tors.” Note, however, that this effect will decrease with in- grams the results deteriorate with the distance from the only
creasing number of stateg at least in the transition region, normalization pointkK =0. Thus, for sampling free energies
since the singularity it€, sharpens in this limit, whereas the the RC multihistogram technique normalized by H)
energiesU always stay in the range<9—U/N=<2. For the seems to be a good choice.

g=10 model is has been observed that at the transition point As a slightly less trivial example, we performed simula-
Pp.q(b) is almost indistinguishable fro, ,(E), when suit-  tions for theq=10 Potts model on the same lattice, which
ably rescaled17]. The minimum of the exact curve of Fig. 2 exhibits a strongly first-order phase transition. It is well
at the critical point is somewhat in contrast to the usual noknown that cluster algorithms are not efficient to reduce the
tion that cluster estimators work best off criticalit§]; this  “supercritical” (exponentially strongslowing down of the
result, however, applies to the spin-spin correlation functiodocal MC dynamics at first-order transitions. For the small
at medium and long distances and to magnetic observabldattice under consideration, however, autocorrelation times
like the susceptibility, which is the integral of the correlation are still quite moderate, so that one gets reliable results with-
function, whereas the internal enerly constitutes the ex- out having to resort to more sophisticated methods such as
treme short distance limit of this quantity. For the magneticmulticanonical simulation$17,18. We gathered data from
observablesn andy the situation is reversed, the variance of 11  single-histogram simulations at coupling¥

the RC estimators being strongly reduced as compared to the0.8,0.9 . . . ,1.8with 22°=1 048576 measurements each.
EM estimators, cf., Fig.®). Note that in contrast to the EM Figure 3 shows the quite astonishing results for the internal
case, the RC estimators provide a single consistent definitioanergy from this simulation data using the analyses in the RC
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T ' T ' T ' ' | 200 ' ' ' T T p

201
L ¢ EM, simulations at q=10
x RC, simulations at g=2

oS

L | L | L | L
1.8 256 320 384 448 512

-E
FIG. 4. Internal energy of thg=10 Potts model on A=16% FIG. 5. Density of states for thg=2 Potts model in two di-

square lattice, reweighted from tie=2 model simulations shown Mensions on &= 16" lattice from single-histogram cluster-update
in Fig. 1 using multiple RC histograms according to Etd). The simulations at coupling&=0.4, 0.8, and 1.2 using the estimator
=10 results from the EM multihistogram analysis are shown forEd. (26). The solid line shows the exact result of Rd0].
comparison.

This works quite well in the high-temperature phase and for
and EM languages, respectively. Naturally, we do not havemall lattices. For lower temperatures, however, the histo-
exact results to compare with in this case; nevertheless, th@ram loses contact with the normalization pdint 0, result-
results from the EM analysis are completely in agreemening in large deviations from the correct normalization, cf.,
with our expectations and also well compatible with resultsFig. 5. Clearly, each simulation samples only a rather small
from previous simulationg19]. So, obviously, the results window of energy space; from the exponential in the de-
from the RC histogram analysis are strikingly wrong—and innominator of Eq.(26), however, configurations near the
a way that is clearly not covered by the present statisticamaximal energyE=— A\ receive the largest weight in the
errors. Obviously, the results for the specific heat, which aréum, so that missing those configurations, which is the case
not shown, look even worse, with a pronounced, unphysicafor largeK, results in an exponentially wrong normalization
double peak resulting from the deviations in internal energyfactor [linear in InQ(E)]. In other words, the absolute nor-
shown in Fig. 3. malization condition(25) reweights the histogram data to the

Since as one of its major strengths in the RC approach wpoint K=0, which will have no reliable outcome if the over-
have the possibility of reweighting in the paramedeiso, as  lap between the histograms at the simulation coupling and at
a first clue to the reason for this conspicuous failure we shoK =0 is too small or even vanishes. Note also, that the sta-
the outcome of using thg=2 simulation data from above tistical error bars given in Fig. 5 do not reflect this funda-
for determining the internal energy of tlie=10 case, cf., mental failure, although it is statistical in nature. This is due
Fig. 4. The agreement with the direct EM analysis of the to the fact that the usual implementation of error estimation
=10 simulations is remarkably good considering the largeschemes for histograms takes the error of histogram bins
distance inq between the simulation and analysis points.without entries to be zero, whereas according 4 &tatis-
Comparing Figs. 3 and 4 it is quite natural to suspect that th#cs it should in some sense be considered infinitely large.

application of the normalization conditid8) is not a proper Expecting a similar sampling-related normalization fail-
choice for simulation data from largermodels. ure for the RC histograms normalized by the conditi@nlet

us relax this absolute normalization and apply an adaptive
lIl. RC HISTOGRAMS AND ADAPTIVE NORMALIZATION normalization scheme as in the original EM multihistogram-

ming formulation of Ref[2]. Consider single-histogram es-
To understand this normalization problem let us shortlytimates of the partition function from simulations at; (q;)
go back to the sampling of the energy density of st&tég) and define reduced free energigsas
for the case of the two dimensiongl=2 (Ising) model.

Here, exact results are not only available for thermal aver- 1 i
ages, but fof)(E) itself [20]. Using theK =0 normalization Fi=— EI” Zpq(9)=—&= K’ (27)
condition (25), a single-histogram estimator for the density
of states in the energy language would be given by From Eq.(7) estimates of the density(b,n) from the single
A histogramsH b ,qi(b,n)zﬂ(i)(b,n) are given by
. v Hk(E)e®
AUE)=2N—"——"—. (26) B (b.n)
> Hy(E)eXE g (b,n)=e”i = : 28)
g - 9 p(1—p)E PalN; (
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Once again combining these estimates in a variance- 50F T =~ T = T 1

—12.0
optimized way as above in Sec. Il, treating theas param-
eters with zero variance, we arrive at the following expres- 4L
sion: dis
3.0+
Z
—F.b _
Ei Nie 7ipP(1—p)& Pqf ; ¢ _mz
g(b,n)= : ‘
2 Nfe #ipfP(1—p)®* g [H"(b,n)] 1o
i .
(29)
0.0 1 L 1 L 1 L 1 L 1 L 1
Now, from this estimate one has the followiagposteriori Lo 12 14 16 18 20
relation for computation of the parametefs: pI

s N FIG. 6. Free energ{left-hand scalgand internal energyright-
F_ N bra_ ~\E—baN hand scalgof the g=10 Potts model on A/=16? square lattice as
€ I_DZO nzl g(b,n)pi(1=p)™ "a;’. (30) computed by thg adaptively normalized RC ?nultihistograming
scheme according to Eq&9) and (30). The results from the EM
Equationg29) and(30) form a pair of equations to be solved multihistogram analysis of the same data are shown for comparison.
self-consistently for the determination of the paramefErs
which can be straightforwardly iterated by plugging in theand can serve as a normalization point for arbitrpryin
results forF from Eqg.(29) into Eq.(30) and vice versa. One practice the best choice depends on the set of simulated cou-
can improve on that by applying more sophisticated iteratiorplings (p; ,q;): for largeqg simulations one might want to
schemes like, e.g., the Newton-Raphson iterafdh]. We  resort to Eq.(32), while otherwise Eq(33) should be the
find, however, that the radius of convergence of this methodbetter choice.
is quite small; therefore, we adaptively revert to the simple Now, we can reconsider the internal energy of ¢j10
iteration if the procedure leaves the Newton-Raphson conease from above with the new, adaptively normalized RC
vergence region. It is obvious that for the iteration to con-multihistograming scheme. Figure 6 shows internal energy
verge, one needs some overlap betweenHigb,n) histo- ~and free energy from this analysis as compared to the EM
grams between “adjacent” simulations, i.e., at least pairwiseMultihistogram approach. As far as the error estimates are
overlap. Apart from this restriction, however, we find this concermned, we apply the jackknife process to the whole it-
iterative scheme to be very well behaved, converging rapidlygration run, i.e., the iteration scheme for fixing the weights
in every case that fulfills the overlap condition. Fi is done for each jackknife block of data separately, taking
To get started, we use first-guess values of fagrom  full account of statistical errors. Clearly, now the results from
thermodynamic integration. Assume that the simulationPOth approaches perfectly agree, the deviations of Fig. 4
points ()= (;,q;) are ordered such that the histograms ofave vanished. As anticipated in Sec. I, also the cluster es-

(i) and (+1) have reasonable overlap; then timator for the internal energy performs noticeably better
than in theq=2 case, such that—at least in the critical
o - L ) . - -
S H-D(b,n) pib(l_pi)g bqin . region—it |s_qU|te comparable in precision to the EM esti
e ,:2 . —p €1 mator, cp. Fig. 7.
b=0 n=1 Ni_1 Pi-1(1=pi-1)" "di—y For the free energy it is obvious that with the adaptive

(3)  normalization scheme of RC histograms we lose the espe-

. . . ) . ) cially high precision throughout the wholkeregion obtained
is a good starting point for the described iteration schefje. by the application of the sum rul®) in Fig. 1 for the Ising

can be chosen arbitrarily, since the given pair of equations i odel. To amend this, having fixed the relative normaliza-
obviously invariant under a global shiff — 7 —71. Thus,  on of the single histograms adaptively, one might consider
we have determined the final estimdigb,n) only up 1o @  gn5ving the sum rulés) to the final resulfy(b,n) instead of
g!obal factor. .T(?.f.IX this last normalization we propose two using the normalizations E33) or Eq.(32). This, however,
different possibilities; on the one hand, we can use the fregjyes results looking almost identical to those shown above
model limit, i.e., evaluater,_oq from Eq.(30) and use Eq. iy Fig. 3, i.e., the large deviations reappear, which clearly
(25) for anyq, reveals the source they are resulting from.

Fo=0q=INZy_04(G)—KE=NInq. (32
IV. COMPARISON OF THE METHODS

On the other hand, the=1 partition function also is trivial . o
other hand, the pa ! aiso s a The effect of this normalization problem should also be

clearly seen in the final estimates for the density of states
=0 (33) g(b,n) from the two RC histograming methods. In Fig. 8 we
’ show a density plot of the relative differences of the esti-

&

£
> (b)pb(l—p)g‘b

F =1:|n
p.d b=0
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4 - T - T - - T the number of clusters by one, namely, by connecting two
previously unconnected clusters, i.e., one has
L _ n=N-b. (35
=) 9 On the other hand, starting from the “opposite” poirtt (
bE . © =&, n=1) one hav N/ bonds per site, so that for produc-
= 2F &% ANy ing a new cluster one must at least removi€ bonds,
BU N %oo
6 M"o o ] N
1 N P n—1< E(S— b), (36)
e
or, for the square lattice,
lIO 1I2 1I4 1|6 1I8 b
BJ nsN-— E +1. (37)

FIG. 7. Ratio of standard deviations for estimates of the interna)Apart from single points near those bounds, all configura-
energyU of the two-dimensionatj=10 Potts model on &/=16° tions within this triangle can actually appear in a Potts model
lattice and RC and EM multihistogram analyses as a function of th&jmulation with nonvanishing probability.

coupling K=J. The variances are estimated by a ‘jackknife”  Now, from Fig. 8 it is obvious, given that the estimate
time?series analysif12]. The RC histograms are normalized ac- g(rel)(b,n) is correct up to an overall factor, that the abso-
cording to Eqs(29) and(30). lutely normalized histograming estimafg2°(b,n) gives
too large estimates fob values near the centdr=A as
compared to the other regions lof(dark shading in Fig. 8
Then, considering again the deviation in internal energy
shown in Fig. 3, its origin becomes clear: the histogram

Hp,q(b,n) for a simulation somewhat below the transition

A (abs _ alrel point will be centred around the line=Db, in Fig. 8; then,

g (b,n)—§""(b,n) . ; s ohe .
el (34)  using the density of states estim&t&°(b,n) for evaluating
g"(b,n) U, the parts of the histogram lying to the right lof b, will

. . . have too large weight as compared to the valued,, thus

lt\)l;ttsvéhzitn:r;?ergggﬁ dosf i?]otsrféli?lr?) \F/)?;l;; pg?g:) ;Starr?i?]tgcfﬁg?n by Eq. (15) resulting in a too large est!mate for the interna!

the point =0, n=A) each a’dded boﬁd caryw at most reduceenergy_u. On th_e other hand, for couplings above the_tranS|-
' tion point the histogram will be centred arouber by, with

too large weights fob<b,, , leading to estimates fdaJ that

are too low. Directly in the vicinity of the transition point,

deviations in normalization are symmetric with respect to the

histogram, which will be centred arouibd=b,, , thus leading

200 1 to an unbiased estimate faf. This is exactly the behavior

found in Fig. 3. Finally, contemplating on the reason for the

deviations in normalization shown in Fig. 8 in the first place,
150f 1 it becomes obvious that they have the same origin as those

n shown in Fig. 5. The exponential factgr " from the sum

(i rule Eqg.(9) attaches large weight to the configurations with
small numbers of clusters; if, however, histograms miss
entries for smalh, as is the case for histograms in the tran-
sition regionb~ A’ of Fig. 8, the sun®,H, 4(b,n)g ™" will
become too small, resulting in too large normalization fac-

tors C 4(b).

Thus, for the application of the sum ru(8) to the final
result from the adaptively normalized RC histograming
scheme to work reliably, one always has to include histo-

FIG. 8. Density plot of the relative differencek=[g@s  grams from ;malq simulations, such as percplatiorg (

— /g of the density of states as sampled from the10  —1) or the Ising modeld=2), that produce configurations

Potts model on aV=16? lattice by the absolutely normalized RC With relatively small numbers of clusters To illustrate this,

histograming scheme of E(L4) (§@3) and the adaptively normal- We combined the data from tlie=2 andq= 10 simulations

ized scheme of Eq(29) (§"), respectively. Dark shading indi- reported above, used the histograming scheme @§sand
cates thafj@3(b,n)>§"®"(b,n), and vice versa. (30) to get results fog=10 and applied the sum rule E®)

mated density of state§(b,n) from the absolutely normal-
ized histograming scheme of Ed4), §@\b,n), and of the
adaptively normalized scheme of Eq$29) and (30),
g®)(b,n), i.e., the quantity

A(b,n)=

250

1001

50r

0 50 100 150 200 250 300 350 400 450 500
b
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(8) after the adaptive normalization. This new approach does
not exhibit the limitations of the absolutely normalized an-
satz to smally simulations.

Comparing the newly introduced, adaptively normalized
random cluster “RC” multihistogram technique with multi-
histograming in the energy/magnetization “EM” language,
we can make the following statementa) The cluster vari-
ables(b,n) form the natural state space for the analysis of the
Potts model. Using the Swendsen-Wang cluster-update algo-
rithm, these numbers are automatically known as a by-
product of the update steps; no additional measurement steps
are neededb) The RC representation allows for reweighting
in both parameters, the thermal couplipgespectivelyK,
and the number of stateg without systematical errors as in
the partial transformation of Reff22]. Especially, the model

b can be considered for the case of nonintegelt is easy to
FIG. 9. Ratio of standard deviations of estimates of the freecombine data from simulations of differegtvalues to en-
energy from the adaptively normalized RC histograming scheme ohance the accuracy for largg (c) Cluster estimators occur
Eq. (29 with (orc, norm) and without grc) a final application of  naturally in the RC language. Although we found that short-
the sum rule Eq(8) to the density of states after determining the distance observables like the internal energy and specific
weights. The used time-series data includes bothgth@ and the  heat are sampled systematically less accurate by cluster esti-
=10 simulations reported above. mators, this situation is reversed for observables sensitive to
long-range order such as the magnetization, susceptibility,
afterwards, i.e., the normalization of the single histogramsind correlation functions. Also, even short-range cluster es-
was found adaptively, whereas the total histogram was notimators perform comparable to EM language estimators for
malized by the sum rulés); this yields results for the inter- |arger q values, at least in the transition region. In the RC
nal and free energies indistinguishable from those of the purginguage, the magnetic observables can be defined consis-
q=10 results of Fig. 6. For the free energy, however, the sizeently throughout the broken and unbroken phases, cf. the
of statistical errors is largely affected by the final normaliza-Appendix.
tion, cf., Fig. 9. For most of the couplings shown, the esti- Apart from that, the combination of data from small- and
mate from the finally sum-rule-normalized density of statesargeq models can serve as a new method to cope with the
is up to about 10 times more accurate in terms of the statissupercritical slowing down at the first-order transitions for
tical errors. The presence and size of such a gain for a givelarge qg: for sufficiently large lattices simulation runs will
coupling is not mainly physically motivated, but rather de-entirely stay in one of the pure phases depending on the
pends on the relation of the simulation pointg (0;) to the initial configuration and boundary conditions due to ergodic-
points of data analysis. ity breaking at the transition point. However, combining such
data with smalleg simulations from the second-order or
weak first-order regime allows the adaptive normalization
scheme to still find the correct normalization of the pure-
We have considered multihistogram data analyses of timphase histograms without real tunneling events. This ap-
series from cluster-update Monte Carlo simulations of theproach is similar in spirit to the simulated tempering tech-
g-state Potts model in the random-cluster language. Generatique[23,24.
izing the original formulation of Re{.8] to the case of simu- One might also think of applying the multicanoni¢4B]
lations of different numbers of statgswe found the original respectively multibondi¢17] simulation approach or one of
ansatz of absolutely normalizing the individual histogramsthe related techniques to the sampling of the density of states
with a geometrical sum rule for finite-length time series tog(b,n). Especially, application of the absolute normalization
produce large deviations from the expected behavior wheiqg. (8) to this case might be of interest. This approach is
applied to cases in whiofyis larger than about 3 or 4 in two currently under investigation. However, sampling the com-
dimensions. We track this error down to a mismatch betweeplete range of possible values in tfign) plane with suffi-
exponential suppression of a part of the state sffac¢ and  cient accuracy is found to be a computationally very de-
a simultaneous exponential enhancement of this region in theanding problem. In contrast, in the current approach, we
sum rule Eq(9). To circumvent this problem, we propose a still stick to the physically sensible approach of importance
different ansatz normalizing the histograms adaptively via asampling, i.e., sampling the phase space according to the
set of self-consistency equations aiming at the minimizatiorlocal canonical weights. Furthermore, we are able to take full
of the variance of the final estimate of the density of statesdvantage of the computational gain of cluster algorithms,
g(b,n). Absolute normalization over the whole temperaturewhereas the multicanonical algorithms put forward so far
region can still be maintained by making contact with theemploy local update&part from the multibondic algorithm
trivial partition function of the percolation limig—1 or by  of Ref.[17]).
combining large- and smat]-data and applying the sum rule  As an interesting application of our ansatz we suggest the

V. CONCLUSIONS
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analysis of the tricritical poing., where the order of the ) 32 TIn Z,4(G,B=0)
thermal transitions changes from second to first order, in Cy= IK2 T}
three dimensions. There has been quite some debate about
the location of this point, estimates ranging frapp=2.15 2 K b
[25] to q.=2.6 [26]. Furthermore, the universality class, k2| 1 rzl(e" =17
critical exponents etc. of this transition have not yet been =—| -0+ —x—5—
properly analyzed. A test for thg,=4 case in two dimen- N P (e"-1)
sions shows that our method is well suited for such an analy- 2
sis. This problem will be considered in a forthcoming publi- = pz—N[(b2>—<b>2—(l— p)(b)]. (A4)
cation.
In the thermodynamic limit, the zero-field “magnetiza-
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APPENDIX: CLUSTER ESTIMATORS <[] [(q—1)+eB]> ne et

¢ q c’ N(q—1)+e5”é

Consider the Potts model coupled to an external magnetic
field H with Hamiltonian[27]:
= lim Ilim
B—0+N—x

ng 1
<§ N (q—l)eB”3+1>

H==32, 8(oi,09)—H 8(ai,0). (A1)
" | . (A5)

< ng 1
N (q—1)e-Bn?
Then, the random-cluster representation of the partition func- c? (=1)e "e+1

tion on a grapty consisting of\' sites andt edges(bonds Here, we split the cluster contributions of the subgraph into

is given by percolating clusters™ and nonpercolating, finite clustecé.
In the indicated order of taking the limits, firéf—c and
Z,4(GB)= > (ek=1)PO]] [(q—1)+eB™] thenB—0, the factors exp{Bn) take the values 0 and 1 for
P\ . . :
gcg ¢ percolating and nonpercolating clustersespectively. Thus,
we arrive at

_ ke b(G') (1 _ ) E-b(G)
© Q%Qp (=) ~ E ng 1 z n? _g-1 2 ng +1
e w SN qa \G N Ta

xfc[ [(q—1)+eBn], (A2) (A6)

which explicitly reflects the symmetry-breaking nature of the
where the product runs over the set of clustisof the  percolating configurations. For the order parameatewhich
subgraphg’, n. is the number of sites in clustefK=3Jis  varies between 0 for the completely disordered state and 1
the thermal coupling paramet&=8H denotes the reduced for the ground states, we find
magnetic field, angp=1—e ¥ is the probability for the ac-

tivation of bonds. qm-1 n¢
In zero field, the internal energy per sités then given by m= q—1 - % N (A7)

i[(e"—l)b] For finite lattices one can retain this definition since the no-

d |InZ,(G,B=0) 1{ oK tion of percolating and nonpercolating clusters is still well
U=--x T}: ARG E defined. Note, that this gives a consistent definition of the
order parameter throughout the disordered and broken
1/b phases. In contrast, in the EM language one has to explicitly
T op\N” (A3)  break symmetry in the low-temperature phase, which is usu-

ally done by defining
which shows the close connection between lilend E dis-

tributions. M-k =( maxX, &(a;j)), (A8)
The zero-field specific heat, follows from Yo\ 1sj=q T
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whereas for the unbroken phase one uses
mKsKt:<2i 5<oi,1)>.

Obviously, for finite lattices, the expectation values of the
RC and EM definitions will not coincide exactly; critical
exponents, however, will of course agree.

The zero-field susceptibilityf is given by

(A9)

o aZ(InZ(B))
X_BLT+NTLW N
— iim i 1 02(8))2 1 5%Z(B)
s oM TNz e | TaNz(e) aB?
n2 1
=—Nm?+ lim i —_
Am +BLT+N'LZ[<§ N {a-1e B“c+1>
ne 1 2
+N< EW(q—l)e‘B”chl >

2
ne 1

N(g—1)e Bet1]?

>

c

4 )
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) 2> < ng> 21

N

q-1 ¢
q

2I’]

iz
)

c®
From Eg.(A10) one recognizes the widely used improved
cluster estimator for the high-temperature phase, namely the
last term. Note, however, that the original improved estima-
tor includesall clusters here instead of only the nonpercolat-
ing ones, which makes a difference for finite lattices. For
finite lattices, once again, from E¢A10) we have a single
definition for both, the unbroken and broken phases.

Alternatively defining the susceptibility corresponding to
the order parametean we get

>

oY
q-1
2

q

(A10)

=(L)2~
X q—1 X
(3 )3 )3 9]
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