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Aging following a zero-temperature quench in the d = 3 Ising model
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Aging in phase-ordering kinetics of the d = 3 Ising model following a quench from infinite to zero temperature
is studied by means of Monte Carlo simulations. In this model the two-time spin-spin autocorrelator Cag is
expected to obey dynamical scaling and to follow asymptotically a power-law decay with the autocorrelation
exponent λ. Previous work indicated that the lower Fisher-Huse bound of λ � d/2 = 1.5 is violated in this
model. Using much larger systems than previously studied, the instantaneous exponent for λ we obtain at
late times does not disagree with this bound. By conducting systematic fits to the data of Cag using different
Ansätze for the leading correction term, we find λ = 1.58(14), with most of the error attributed to the systematic
uncertainty regarding the Ansätze. This result is in contrast to the recent report that below the roughening
transition universality might be violated.
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I. INTRODUCTION

Aging phenomena, quite generally, arise in out-of-
equilibrium systems for times shorter than the time it takes
to reach a thermodynamically stable state [1,2] and are fre-
quently studied in glassy systems [3–5]. Aging in nonglassy
systems, such as the paradigmatic Ising model given by the
Hamiltonian H = −∑

〈i j〉 σiσ j with the spin variables σi ∈
{−1,+1}, is more accessible by theoretical analysis [2]. For
quenches to below the critical temperature Tc, most numer-
ical work on aging phenomena in phase-ordering processes
both in two [6–10] and three [11–13] dimensions are in good
agreement with the available theoretical bounds [6], as well as
being compatible with some approximate predictions [8,14].
One exception are quenches to particularly low temperatures
in three dimensions where numerical work so far has been
inconclusive [6,15–18].

The phase-ordering kinetics following such a quench is
described by the characteristic length scale �(t ) of domains
of like spins, which is predicted to follow the power law

�(t ) ∝ tα, (1)

with α = 1/2 for nearest-neighbor interacting systems, ir-
respective of the spatial dimension d [19]. In the case of
a zero-temperature quench in d = 3, many works [6,17,20–
22], however, have found the growth to be slower than ex-
pected, which was attributed to pre-asymptotic effects [21].
We recently reported results from simulations of much larger
systems and found that instead of approaching 1/2, α actually
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(at least preasymptotically) takes values larger than 1/2 [23].
We then conjectured that at early times the formation of spon-
gelike structures of the domains hinders the growth, while at
later times the collapse of said structures does enhance the
growth rate.

To better understand this nonequilibrium process, we study
its aging characteristics by probing the two-time spin-spin
autocorrelator given by

Cag(t, tw ) = 〈σi(t )σi(tw )〉, (2)

where t is the observation time and tw the waiting time. One
expects dynamical scaling in the scaling variable y = t/tw and
that [1,2]

Cag(t, tw ) = fC (y)
y→∞−→ fC,∞ y−λ/z, (3)

where fC is the corresponding scaling function, λ the auto-
correlation exponent, z = 1/α the dynamical exponent, and
fC,∞ the amplitude of the asymptotic power law. As usual, it
is assumed that both tw and t − tw are much larger than some
microscopic reference timescale tmicro.

The goal of this work is to probe for dynamical scaling and
to estimate the autocorrelation exponent λ in Eq. (3). An early
approximation by Ohta et al. [14] yields λ = d/2 [24], with d
being the spatial dimension. More generally, Fisher and Huse
(FH) [6] argued that λ has to be in the interval [d/2, d], which
corresponds to λ in between 1.5 and 3 here. Numerically,
they find λ to effectively vary with time and that it is below
or equal to their lower bound using very small systems of
N = 803 spins. A later approximation by Liu and Mazenko
(LM) [8] predicted a value of λ ≈ 1.67. More recent numer-
ical work, the most recent being Refs. [15–18], report values
of λ far below the LM value and outside the FH bound. As in
equilibrium the nature of interfaces changes at the roughening
transition, it appears plausible that this may also cause differ-
ent nonequilibrium behavior. Specifically, it was argued [18]
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that these anomalies arise as a result of nonuniversal behavior
below the roughening temperature TR ≈ 0.54Tc [25], where
in equilibrium interfaces are locally flat instead of rough, as
they would be for T > TR [26]. This effect is most dominantly
seen at zero temperature, which is the case considered here.
These authors already pointed out the need for considering
large systems for studying dynamics at such low temperatures
[15]. We believe that the aging results for their considered box
lengths are still affected by transients which might have led
to such a conclusion. We revisit this complex problem, armed
with resources and methods that are capable of handling much
bigger systems over long time periods.

The rest of the paper is organized as follows. In Sec. II
we describe the methodology used. Our numerical results are
presented in Sec. III, and we conclude in Sec. IV.

II. METHODS

Part of the later analysis invokes direct use of the charac-
teristic length scale �(t ), which we obtain by measuring the
two-point equal-time correlation function C(r, t ) = 〈σiσ j〉 −
〈σi〉〈σ j〉. As C(r, t ) obeys dynamical scaling, i.e., C(r, t ) =
C̃(r/�(t )), the length �(t ) can be extracted by finding the dis-
tance r = �(t ) at which the correlation function has decayed
to 50% (or any other percentage; for details see Sec. III of the
Supplementary Material in Ref. [23]).

The simulations were carried out for nonconserved order-
parameter dynamics with Monte Carlo (MC) updates utilizing
the Glauber acceptance criterion [27]. At zero temperature
this translates to accepting (rejecting) every spin-flip attempt
that decreases (increases) the internal energy of the system,
and accepting a flip without a change in energy with 50%
chance. As at low temperatures most spin-flip attempts would
otherwise be rejected, we use the rejection-free n-fold way
update [28], which has identical dynamics as the Glauber
update and speeds up the simulations significantly.

All data presented were averaged over 40 independent
realizations for the system sizes L = 512, 1024, and over 36
realizations for L = 1536. We make use of periodic boundary
conditions. The simulation for each realization is carried out
by using a different initial random configuration (correspond-
ing to T = ∞ with close-to-zero magnetization per lattice
site, i.e., m ≈ 0) and using a different random number seed for
each time evolution. Throughout, error bars correspond to the
standard error obtained by using the Jackknife method [29].

III. RESULTS

Figure 1 shows the characteristic length scale as a function
of time t in Monte Carlo sweeps (MCS). Although roughly
compatible with the expected power-law growth ∝ t1/2 (solid
line), the data shows some deviations: At early times it grows
much slower and for L = 1536 at late times it grows faster.
For a detailed analysis see Ref. [23], where we also present
the instantaneous growth exponent, which shows the growth
faster than t1/2 very clearly.

One problem in the estimation of λ is that when plotting
Cag(t, tw ) as a function of t/tw and fitting a power law one
obtains only the exponent ratio λ/z. As outlined above, also
the value for z = 1/α is still debated and effectively changes
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FIG. 1. Characteristic length scale � vs MC time t . Although
power-law growth with exponent 1/2 (solid line) is expected, at early
times slower and at late times faster growth is observed.

with time, which complicates the estimation of λ. To avoid
this problem, it is common [15–18] to choose x = �(t )/�w as
a scaling variable where �w = �(tw ), giving rise to the aging
relation

Cag(t, tw ) = f̃C (x)
x→∞−→ f̃C,∞ x−λ. (4)

In Fig. 2 the autocorrelation function Cag is plotted vs
x = �(t )/�w for (a) different system sizes and (b) different
waiting times (cf. Appendix A). As can be seen in Fig. 2(a),
finite-size effects occur in the usual way: For small x the data
points fall on a common curve, and for larger x the data sets
bend away from this common curve in order of ascending
system size. Dynamical scaling is probed by considering the
curves for different tw shown in Fig. 2(b). These collapse as
expected from Eq. (4), although particularly for small tw and
for small x, not perfectly. Besides the suboptimal dynamical
scaling, Cag also does not (yet) decay according to a pure
power law. For x � 10 it can be seen that the function decays
at least as fast as the FH lower bound and is not incompatible
with the LM value. This leads us to believe that the FH bound
is not violated (unlike previously conjectured).

To study the effective variation of the power-law exponent
for Cag with time more quantitatively, one can consider the
instantaneous autocorrelation exponent

λi = −d ln Cag

d ln x
. (5)

The results for λi are shown in Fig. 3 as a function of 1/x. As
can be seen, λi for 1/x > 0.4 is practically a linear function,
which seemingly allows a linear extrapolation to 1/x → 0
(solid line). Vadakkayil et al. [17] have performed such ex-
trapolations using system sizes up to 5123 and found that λi

approaches a value of ≈1.2, which is well below the FH lower
bound [6] and far below the LM value [8] of 1.67. When
performing this exercise we obtain a similar value for λ, viz.
λ ≈ 1.0. This somewhat smaller value than that in Ref. [17]
may be due to � having been measured differently [30]. Only
by studying larger systems does it become apparent that the
linear behavior is in fact misleading: The data for L = 1024
and L = 1536 in Fig. 3(a) on the interval 1/x ∈ [0.2, 0.4]
are still in good agreement and well above the extrapolating
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FIG. 2. Autocorrelation function Cag(t, tw ) plotted against
�(t )/�w . The dashed lines show the FH lower bound [6] and the
solid lines the LM value [8]. (a) Results for different system sizes
L and (b) for different waiting times tw in units of MCS. The actual
values for the mnemonic tw shown here and in subsequent figures are
provided in Appendix A.

line. Only at 1/x � 0.2 does the data for L = 1024 leave the
common curve, which marks the onset of finite-size effects
for this system size. Therefore, on this interval finite-size
effects are negligible, and the extrapolating line does not
provide any information on the true asymptotic behavior. The
key problem, it appears, is that finite-size effects in λi show
themselves in form of the curve drifting towards higher λi. As
a consequence, an increase in λi (before the onset of finite-size
effects) may easily be mistaken for a finite-size effect, and
this indeed seems to be the case. Additionally, from Fig. 3(b)
it becomes immediately clear that the value obtained from the
extrapolation strongly depends upon the choice of tw. It shows
λi for various waiting times tw, and for each tw we would get
a different estimate for the asymptotic λ if we were to carry
out the extrapolation.

The reason for finite-size effects causing λi to shoot up is
that �(t ) stagnates at some value when finite-size effects set
in, and thus any further decreasing autocorrelation will effec-
tively have the same x value when plotted against �(t )/�w, as
can be seen in Fig. 2(a). Consequentially, this gives rise to the
very steep slopes of Cag(t, tw ) which lead to the large values
for λi visible in Fig. 3. Hence, it is worth considering Cag

as a function of
√

y ≡ √
t/tw (corresponding to the expected
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FIG. 3. Instantaneous autocorrelation exponent λi(t, tw ) vs
[�(t )/�w]−1 (a) for different system sizes and (b) for different waiting
times tw . The solid black lines in (a) and (b) show an extrapolation in
1/x as performed in Ref. [17].

asymptotic behavior of �(t )/�w for an infinite system). In
this case finite-size effects result in smaller (absolute) slopes,
which allows differentiation of an increase in the analogously
to Eq. (5) defined instantaneous exponent

[λ/z]i × 2 = −d ln Cag

d ln
√

y
(6)

from finite-size effects.
We thus repeat the same type of analysis as above but using√

y as the scaling variable instead of x. In Fig. 4 we show
the two-time autocorrelator (a) for different system sizes and
(b) for different waiting times. As outlined above, finite-size
effects appear in form of a reduced decay of Cag when plotted
against

√
y; see Fig. 4(a). Similar to Fig. 2(b), the quality of

the collapse of Cag for different waiting times [Fig. 4(b)] is
moderate, whereas Cag for different L agrees well before the
onset of finite-size effects.

In Fig. 5 the instantaneous exponent [λ/z]i × 2 is presented
(a) for the studied system sizes and (b) for different waiting
times. As before, it increases at later times (that is, small
1/

√
y), which now is clearly distinguished from the finite-size

effects (cf. Fig. 3), in which the exponent strongly decreases.
For tw = 7 × 102 in units of MCS [Fig. 5(a)] alongside the
linear behavior for large 1/

√
y, now also for small values of

044148-3



GESSERT, CHRISTIANSEN, AND JANKE PHYSICAL REVIEW E 109, 044148 (2024)

0.01

0.1

1

011

1 10 100 1000

tw = 7 × 102

√
y = t/tw

y

L = 512
L = 1024
L = 1536
∝ (

√
y)−1.5

∝ (
√

y)−1.67

0.01

0.1

1

011

1 10 100 1000

L = 1536

√
y = t/tw

y

tw = 7 × 102

tw = 2 × 103

tw = 5 × 103

tw = 8 × 103

tw = 13 × 103

tw = 22 × 103

∝ (
√

y)−1.5

∝ (
√

y)−1.67

FIG. 4. As in Fig. 2 but using
√

y as the scaling variable instead:
Autocorrelation function Cag(t, tw ) plotted against

√
y. The dashed

lines show the FH lower bound [6] and solid lines the LM value [8].
(a) Results for different system sizes L and (b) for different waiting
times tw . In both panels the upper abscissa shows y (as opposed to√

y in the lower abscissa).

the abscissa the exponent changes linearly. The rate at which
the exponent changes is not incompatible with the LM value
(solid line).

Similar observations can be made when considering larger
waiting times [Fig. 5(b)]: The dataset for tw = 2 × 103, just
before the onset of finite-size effects, follows a straight line
with a different slope also consistent with the LM value (solid
line). The data for tw = 5 × 103 is not as conclusive but is also
compatible with the estimate, and for larger waiting times too
little range of the abscissa is covered before finite-size effects
set in.

Theoretically, on the other hand, using local-scale invari-
ance (LSI) [2,31] and studying exactly solvable models such
as the one-dimensional Ising model and the spherical model,
one expects the leading correction in Cag to be in 1/y [32].
Thus, it seems natural to consider the instantaneous exponent
of Cag with respect to y. Of course, log-log plots of Cag against
y look precisely the same as in Fig. 4, with the y values read
off from the upper abscissa. Surprisingly, when carrying out
the extrapolation of the instantaneous exponent in 1/y (see
Fig. 6) we get quite different extrapolating values of similar
quality. Graphically the data appears just as compatible with a
linear extrapolation in 1/y as it does with an extrapolation in
1/

√
y. In this case the intercept was fixed to 1.5 (the FH lower

bound) instead of 1.67 (the LM value).
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FIG. 5. As in Fig. 3 but using
√

y as the scaling variable instead:
Instantaneous exponent [λ/z]i × 2 vs (t/tw )−1/2 (a) for different sys-
tem sizes and (b) for different waiting times tw . In both cases the
solid lines are guide to the eye, connecting the data points to the LM
value of 1.67 as 1/

√
y → 0. The value of the FH lower bound 1.5 is

shown with dotted lines.

The above analysis strongly relies on the use of the in-
stantaneous exponents of Cag and the extrapolation in 1/x,
1/

√
y, and 1/y in these. The calculation of the instantaneous

exponents requires numerical derivatives subject to various
subtleties such as the used stencil and the point density and
typically have larger errors than the original data. We there-
fore now turn to studying the original data for Cag and using
correction-to-scaling fits to extract a quantitative estimate for
the asymptotic value for λ. Note that for this quantitative
exercise we are quoting the actual waiting times instead of the
mnemonic ones (cf. Appendix A). The linear behavior with
respect to 1/

√
y seen in Fig. 5 suggests empirically that the

leading correction term for Cag is in 1/
√

y, i.e.,

Cag(y) � ay−λ/z

(
1 − c√

y

)
, (7a)

where a is the amplitude of the leading term and c the strength
of the first correction term. Plugging this into Eq. (6) yields

[λ/z]i × 2 = 2

z
λ − c√

y − c

y→∞−→ 2

z
λ − c√

y
. (7b)

Analogously, a leading correction of Cag in 1/y [32], i.e.,

Cag(y) � ay−λ/z

(
1 − c

y

)
, (8a)
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FIG. 6. As in Fig. 5 but using 1/y as abscissa instead of 1/
√

y:
Instantaneous exponent [λ/z]i × 2 vs (t/tw )−1 (a) for different sys-
tem sizes and (b) for different waiting times tw . In both cases the
solid lines are guide to the eye, connecting the data points to the FH
lower bound 1.5 (shown as dotted lines) as 1/y → 0.

yields

[λ/z]i × 2 = 2

z
λ − 2c

y − c

y→∞−→ 2

z
λ − 2c

y
. (8b)

The results from performing fits of Cag with both
correction-to-scaling Ansätze are summarized in Fig. 7 for
L = 1536. The range of the fits [ymin, ymax] was determined in
the following way: ymax was fixed as 2 × 105/tw, where tmax =
2 × 105 is the time when finite-size effects set in, determined
through the maximum location of the instantaneous exponent.
(tmax is practically independent of tw.) The lower bound ymin

we have systematically studied by monitoring the goodness of
the fit [33]; see Fig. 7(a). Due to the strong correlation of the
obtained time series, the numerical value obtained for χ2 as
a measure for the goodness of the fit has little significance.
However, it is still useful to compare it for different ymin,
as a rapidly growing χ2 for small ymin can indicate the y at
which only a first-order correction is no longer sufficient. By
doing so, we have found that for tw = 699 both fit Ansätze
are justified down to ymin ≈ 65 − 75. Note that this ymin is in
principle independent of tw. Although the χ2 values obtained
for the 1/

√
y fits are slightly smaller than those obtained for

the 1/y fits, both are within error bars and we cannot make
any quantitative statement on which Ansatz performs better.
The error bars on the fitting parameters were obtained by
using the Jackknife method [29], that is, carrying out many
fits with subsets of the data and then calculating the spread of
the obtained parameters.

The estimates of the exponent 2λ/z obtained from this
analysis are shown in Fig. 7(b). The values of the exponent
for tw = 699 and 1857 agree until ymin ≈ 60, which is when
there are too few data points [34] for the larger waiting time,
which is reflected in quickly growing error bars and a decay in
the exponent. For tw = 699 a much larger range of ymin can be
studied. Throughout this range the obtained values for 2λ/z
are constant within error bars, although a trend of a slightly
increasing 2λ/z with increasing ymin cannot be ruled out. The
largest systematic uncertainty comes from the choice of the
scaling correction. Throughout, we obtain larger values for
λ/z when using

√
y as scaling variable; the reason for this is

that 1/
√

y is a stronger correcting term than 1/y. Numerically,
it is unfortunately impossible to discern which fitting Ansatz
is more appropriate.

This is demonstrated in Fig. 7(c), where the fitting func-
tions for both Ansätze are shown for the fitting range y ∈
[76, 290]. For the 1/

√
y Ansatz, using Eq. (7a) we obtain the

fitting parameters

2λ/z = 1.633(83), a = 8.8(2.3), c2 = 7.8(2.5), (9)

and for the 1/y Ansatz, using Eq. (8a),

2λ/z = 1.507(64), a = 5.35(94), c = 11.5(2.5), (10)

is found. Note that we present c2 for the 1/
√

y Ansatz, as then
in both cases the third parameter is in the same units as y, thus
allowing straightforward comparison of the correction ampli-
tudes. At the scale of the plot, both fits are indistinguishable
from the data except for small y outside the fitting range. The
inset shows the ratio of the two fitting functions within the
fitting interval which varies around 1.0 ± 0.001. The relative
error of the data in the relevant range is about one order of
magnitude larger, i.e., 1% − 2%, which leads us to conclude
that (at least numerically) we cannot draw any conclusion
on which form describes the data better. In Appendix B we
consider yet two other forms for Cag for which the asymptotic
limit of the instantaneous exponent in Eqs. (7b) and (8b) is
exact.

Figure 7(d) shows the instantaneous exponent from Fig. 5
alongside the curves calculated from Eqs. (7b) and (8b) us-
ing the fitting parameters from Fig. 7(c). Within the range
of the fits resp. the extrapolations, all lines agree with the
data well within error bars. As for the asymptotic values of
2λ/z, they range from 1.5 to 1.7, which (using the theory
value z = 2) includes both the FH lower bound of λ = 1.5
as well as the LM value of λ ≈ 1.67. As can be seen from
Eqs. (7b) and (8b), for y → ∞ the instantaneous exponents
obtained from fits of Cag should correspond to the linear
extrapolations in the numerical data for the instantaneous ex-
ponent. Because the graphical extrapolations do not take into
account the subtracting term in the denominators of Eqs. (7b)
and (8b), they deviate slightly from the log-derivatives of
the fits.

This fitting exercise leads to the conservative estimate of
λ ∈ [1.44, 1.72] (obtained from the upper bound of Eq. (9)
and the lower bound of Eq. (10), assuming that asymptotically
z = 2 holds), which includes the FH lower bound, the value
of 1.6 found for quench temperatures above TR [11–13], as
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FIG. 7. Correction-to-scaling fits on Cag(t, tw ) using Eqs. (7a) and (8a), denoted by “1/
√

y fit” and “1/y fit,” respectively, for L = 1536.
(a) χ 2 per degree of freedom using tw = 699 and 1857 as a function of ymin with ymax = 2 × 105/tw . Colored shades correspond to error bars
obtained by Jackknifing [29]. The dashed vertical line shows the ymin chosen for subpanels (c) and (d). (b) Numerical value for 2λ/z obtained
from the same fits as in (a). (c) Data and fitting functions for Cag(t, tw ) and tw = 699. The fitting range y ∈ [76, 290] is indicated by dashed
vertical lines. The inset shows that the ratio Eq. (8a)/Eq. (7a) of the two fitting functions varies by less than 0.1% within the fitting range.
(d) Instantaneous exponent as in Fig. 5. Solid lines show log-derivative of the fits from Eqs. (7a) and (8a), dashed lines are the graphical
extrapolations in 1/

√
y and 1/y as shown as guide to the eye in Figs. 5 and 6, respectively.

well as the LM approximation, while excluding low values of
λ ≈ 1.1 from Refs. [16,18] and λ ≈ 1.2 found in Ref. [17].

IV. CONCLUSION

We have performed large-scale Monte Carlo simulations
with Glauber updates of the three-dimensional Ising model
when quenched to T = 0 for system sizes up to 15363. In this
setting we have studied the two-time spin-spin autocorrelation
function to probe aging phenomena in this system. The main
objective was to test for dynamical scaling and to determine
the autocorrelation exponent λ.

The observed dynamical scaling in our data is not optimal,
i.e., the autocorrelator Cag does not collapse perfectly when
plotted as a function of t/tw for different waiting times tw.
We suspect this to be due to the presence of preasymptotic
effects even for very large systems and at considerably late
times. This is in agreement with late preasymptotic effects
observed in the characteristic length scale we recently re-
ported on [23]. Nonetheless, our observations suggest that
the FH lower bound is obeyed in this model, which is in
contrast to earlier reports [15–18]. At the latest times we could
study, the decay of the autocorrelation function is at least as
fast as the FH lower bound. As the instantaneous exponent
throughout is increasing, an asymptotic value for λ below
1.5 seems very unlikely. In fact, based on our results, even
larger values, potentially compatible with a value of 1.6 as ob-
served in quenches to nonzero temperatures T > TR [11–13],
or with 1.67 as suggested by Liu and Mazenko [8], appear
realistic.

In an attempt to get an as quantitative as possible es-
timate of the asymptotic value of λ from our data, we
have carried out correction-to-scaling fits to the two-time
spin-spin autocorrelation function data by varying both the
fitting range [ymin, ymax] and the waiting time tw. By doing
so we obtain a conservative estimate λ = 1.58(14), which
includes the FH lower bound, the value seen for tempera-
tures above the roughening transition TR, and the LM value.
We find larger exponents when using

√
y as a scaling vari-

able than when using y. This trend is not specific to using
fits of Cag but also occurs when carrying out extrapola-
tions in the instantaneous exponents with respect to 1/x =
(�(t )/�w )−1 � (

√
t/

√
tw )−1 = 1/

√
y as compared to those

performed with respect to 1/y (see Appendix B for quanti-
tative fits of the instantaneous exponent). For a conclusive
answer, however, even much larger systems would need to be
studied.

Regarding the recent report of nonuniversality in quenches
to below the roughening transition temperature TR [18], our
results are in favor of universality even for quenches to zero
temperature far below TR. An interpretation of the observa-
tions in Ref. [18] could be that instead of nonuniversality
for temperatures below TR, strong corrections to scaling are
induced that result in an extraordinarily long preasymptotic
regime, which we expect to be strongest at T = 0. For tem-
peratures below TR, nonequilibrium interfaces are locally flat
over increasing distance with decreasing temperature. It is
hence plausible that preasymptotic behavior is seen when the
coarsening length scale is less than the distance at which
interfaces are flat. This is consistent with above corrections
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TABLE I. Actual waiting times tw and their rounded mnemonic
values usually referred to in the text.

Actual tw Mnemonic tw

699 7 × 102

1857 2 × 103

4864 5 × 103

7855 8 × 103

12674 13 × 103

22484 22 × 103

to scaling strongest at T = 0 and links the roughening tran-
sition to the observed long transients. It would be interesting
to see whether one makes similar observations for nonzero
quench temperatures below TR when studying systems as
large as we did here. In particular, it might be insightful to
carry out correction-to-scaling fits for various quench tem-
peratures and monitor the magnitude of the amplitude of the
corrections, c.
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APPENDIX A: ACTUAL WAITING TIMES

The measuring times are evenly spaced on a log scale,
and we have selected the studied waiting times as a subset
of these. Because of this design choice, both the measuring
times as well as the waiting times are not round numbers.
Additionally, as we chose to use for tw every tenth point in
time for t < 5000 and every fifth for t > 5000, this translates
to quite odd waiting times, which is why we have usually
referred to their rounded values, except when discussing the
quantitative fitting analysis. In Table I we show the actual
times at which we have saved the spin configurations.

APPENDIX B: FURTHER FITTING ANSÄTZE
FOR THE AUTOCORRELATION FUNCTION

Previous work such as Refs. [13,16] also used an exponen-
tial correction Ansatz for Cag, i.e.,

Cag(y) � ay−λ/z exp

(
− c√

y

)
, (B1a)

as it yields an instantaneous exponent linear in 1/
√

y, i.e.,

[λ/z]i × 2 = 2

z
λ − c√

y
, (B1b)

when plugged into Eq. (6). Similarly, when using the scaling
variable y, the exponential correction Ansatz,

Cag(y) � ay−λ/z exp

(
−c

y

)
, (B2a)

yields

[λ/z]i × 2 = 2

z
λ − 2c

y
. (B2b)

Similar to the fitting exercise in Sec. III, we have carried
out fits of Cag using the Ansätze Eqs. (B1a) and (B2a) on the
same fitting range y ∈ [76, 290], giving for the 1/

√
y Ansatz

in Eq. (B1a) the parameters

2λ/z = 1.73(13), a = 13.0(5.6), c2 = 24(13), (B3)

and for the 1/y Ansatz [Eq. (B2a)]

2λ/z = 1.527(73), a = 5.7(1.2), c = 14.0(3.7). (B4)

As in this case the instantaneous exponent is just a linear
function, we carry out fits using the numerical data for the
instantaneous exponent as well. Here, we find for the 1/

√
y

Ansatz [Eq. (B1b)]

2λ/z = 1.74(12), c2 = 24(11), (B5)

and for the 1/y Ansatz [Eq. (B2b)]

2λ/z = 1.521(65), c = 13.5(3.0), (B6)

which is in very good agreement with the values obtained
using the exponential fitting Ansätze for Cag. Note that the
statistical errors of the fitting parameters for the fits of the
instantaneous exponent are even slightly smaller than those
of Cag. Initially, one might expect the Jackknife errors to be
larger for the fits carried out on the instantaneous exponent, as
it is subject to various subtleties mentioned above. We suspect
that this effect is reduced by the fact that only two fitting
parameters are required instead of otherwise three. However,
this is a mere numerical observation, and we make no claim
on either fitting approach (on the autocorrelation function or
the one on the instantaneous exponent) being better than the
other.

While the fitting parameters of the exponential 1/y fit in
Eq. (B4) are fully consistent with those in Eq. (10), the statis-
tical errors of the exponential 1/

√
y fit in Eq. (B3) turn out to

be much larger than those in Eq. (9), and the estimate for 2λ/z
shifts to a considerably higher value, albeit still compatible
within error bars. This would increase our final estimate for λ,
but due to the comparatively large uncertainties, we have not
taken this fit into account.
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