High-temperature series for the bond-diluted Ising model in 3, 4, and 5 dimensions

Meik Hellmund^{1,3,*} and Wolfhard Janke^{2,3,†}

¹Mathematisches Institut, Universität Leipzig, Augustusplatz 10/11, D-04109 Leipzig, Germany

²Institut für Theoretische Physik, Universität Leipzig, Augustusplatz 10/11, D-04109 Leipzig, Germany

³Centre for Theoretical Sciences (NTZ) of the Centre for Advanced Study (ZHS), Universität Leipzig, Emil-Fuchs-Straße 1,

D-04105 Leipzig, Germany

(Received 13 June 2006; published 12 October 2006)

In order to study the influence of quenched disorder on second-order phase transitions, high-temperature series expansions of the susceptibility and the free energy are obtained for the quenched bond-diluted Ising model in d=3-5 dimensions. They are analyzed using different extrapolation methods tailored to the expected singularity behaviors. In d=4 and 5 dimensions we confirm that the critical behavior is governed by the pure fixed point up to dilutions near the geometric bond percolation threshold. The existence and form of logarithmic corrections for the pure Ising model in d=4 are confirmed, and our results for the critical behavior of the diluted system are in agreement with the type of singularity predicted by renormalization group considerations. In three dimensions we find large crossover effects between the pure Ising, percolation, and random fixed points. We estimate the critical exponent of the susceptibility to be $\gamma=1.305(5)$ at the random fixed point.

DOI: 10.1103/PhysRevB.74.144201

PACS number(s): 64.60.Fr, 05.50.+q, 75.10.Hk, 75.10.Nr

I. INTRODUCTION

For many years random Ising models have served as paradigmatic systems in which the influence of quenched disorder may be studied through different techniques. In the present work we report results obtained by high-temperature series expansions. Systematic series expansions¹ for statistical physics models defined on a lattice provide an useful complement to field-theoretical renormalization group studies and large-scale numerical Monte Carlo simulations. This is in particular true when studying phase transitions and critical phenomena of quenched, disordered systems.

Series expansion techniques treat the quenched disorder average exactly, and the infinite-volume limit is implicitly implied. Therefore one can obtain exact results up to a certain order in the inverse temperature for many quantities. Moreover, one can keep the disorder strength p as well as the dimension d as symbolic parameters and therefore analyze large regions of the parameter space of disordered systems. The critical part of the series expansion approach lies in the extrapolation techniques which are used in order to obtain information on the phase transition behavior from the finite number of known coefficients. While for pure systems this usually works quite well, one can question the use of these extrapolation techniques in disordered systems, where the singularity structure of the free energy or susceptibility may be very complicated, involving Griffiths-type singularities or logarithmic corrections.² Yet our work indicates that at least for the model we consider here, the extrapolation techniques are of comparable quality as for the case of the pure (no disorder) Ising model.

We consider in this paper the Ising model on a hypercubic *d*-dimensional lattice \mathbb{Z}^d with bond dilution as a realization of quenched and uncorrelated disorder. The pure model has a second-order phase transition for $d \ge 2$, and the upper critical dimension, where mean-field behavior sets in, is d_u =4. The influence of quenched disorder can be estimated by the Harris criterion:³ For $d > d_u$ =4, the disorder is expected to

change only nonuniversal quantities such as the transition temperature T_c . At the upper critical dimension d=4, logarithmic or even more subtle correction terms should appear, and in d=3, the phase transition of the disordered system should be governed by a new "random" fixed point since for the pure model the critical exponent α of the specific heat is positive and disorder should hence be a relevant perturbation. Our high-temperature series analyses presented in this paper affirm this picture.

The rest of the paper is organized as follows: In Sec. II we first briefly recall the model and some of its properties. Section III is devoted to a description of the methods used by us for generating the series expansions, and Sec. IV first starts out with some remarks on the analysis techniques used. The main results are presented in the following subsections, where we discuss our results for the random-bond Ising model in five (Sec. IV A), four (Sec. IV B), and three (Sec. IV C) dimensions. Finally, Sec. V contains our conclusions.

II. THE MODEL

The ferromagnetic disordered Ising model on hypercubic lattices \mathbb{Z}^d is defined by the partition function

$$Z(\{J_{ij}\}) = \sum_{\{s_i\}} \exp\left(\beta \sum_{\langle ij \rangle} J_{ij} s_i s_j\right),\tag{1}$$

where $\beta = 1/k_BT$ is the inverse temperature, J_{ij} are quenched (non-negative) nearest-neighbor coupling constants, and the spins s_i can take on the two different values ± 1 . In our series expansion the combination $v_{ij} = \tanh(\beta J_{ij})$ will be the relevant expansion parameter. Quenched disorder averages $[\dots]_{P(J)}$ such as the free energy

$$-\beta F = [\ln Z]_{P(J)} \tag{2}$$

are taken over an uncorrelated bimodal distribution of the form

FIG. 1. Critical coupling v_c as function of the dilution p for d = 3, 4, and 5 dimensions. The arrows on the top axis indicate the percolation thresholds.

$$P(J_{ij}) = (1-p)\,\delta(J_{ij} - J_0) + p\,\delta(J_{ij}),\tag{3}$$

which corresponds to bond dilution: With probability p, bonds are effectively absent from the lattice, so that p=0 represents the pure system. The expansion parameter for averaged quantities is usually taken as $v = \tanh(\beta J_0)$.

A. Thermal phase transitions

The pure (p=0) model has for $d \ge 2$ a second-order phase transition from the disordered high-temperature phase to a ferromagnetic low-temperature phase. Bond dilution decreases T_c . Approaching the geometric bond percolation threshold $p = p_c$ the critical temperature decreases to zero $(v_c \rightarrow 1)$ since above this value only finite clusters of bonds are present and therefore no global ferromagnetic order is possible. Figure 1 gives an overview of the phase diagrams as calculated in this work from high-temperature series of the susceptibility. The influence of quenched disorder on the thermal fixed point is different above and below the upper critical dimension $d_u=4$. For $d \ge 4$ the pure fixed point is, according to the Harris criterion,³ stable against the influence of disorder and one expects that the renormalization group (RG) flow goes along the critical line from the unstable percolation fixed point straight to the stable pure fixed point. The critical behavior along this line of phase transitions is governed by the pure fixed point. For d=3 the pure fixed point is unstable and one expects a new random fixed point governing the critical behavior in the region 0 , attracting RG flow from both sides (pure and percolation fixed points). More specifically, for d=4 random disorder changes the form of the logarithmic corrections to the Gaussian fixed point,⁴ whereas for d=5 Gaussian behavior is expected for p=0 and p>0 as well.

B. Crossover to the percolation point

The crossover behavior of the diluted system near the percolation threshold of the underlying lattice is well understood^{5–7} and independent of the dimension of the lattice. The percolation critical point $p=p_c$, $T_c=0$ ($v_c=1$) is always unstable against thermal fluctuations⁶ and plays for our system the role of the strong disorder fixed point.⁸

The crossover exponent ϕ is exactly 1, and critical exponents approach their percolation values with a scaling behavior of the form

$$\chi \sim (p_c - p)^{-\gamma_p} f_{\chi} \left(\frac{e^{-2J_0/T}}{p_c - p} \right) \tag{4}$$

$$\sim (p_c - p)^{-\gamma_p} f_{\chi} \left(\frac{1}{p_c - p} \frac{1 - v}{1 + v} \right), \tag{5}$$

where f_{χ} is a crossover-scaling function and the critical line near v=1, $p=p_c$ has the form

$$\frac{1-v}{1+v} \propto (p_c - p). \tag{6}$$

III. STAR-GRAPH EXPANSION

The star-graph expansion method has been reviewed many times in the literature⁹ as well as in our previous papers.^{10,11} We will only present some algorithmic details of our approach and make some remarks comparing different techniques for series generation.

"Star graph" is an old-fashioned name for one-vertexirreducible graphs. For observables F which allow a stargraph expansion (like the free energy and various inverse susceptibilities) this technique delivers a representation of Fon an infinite, e.g., hypercubic, lattice,

$$F(\mathbb{Z}^d) = \sum_G E(G; \mathbb{Z}^d) W_F(G), \tag{7}$$

as sum over star graphs (one-vertex irreducible graphs) only. Here, $E(G;\mathbb{Z}^d)$ denotes the weak embedding number of the graph *G* in the given lattice structure¹² and $W_F(G)$ can be recursively calculated from knowledge of F(G) and F(G') for all star subgraphs $G' \subset G$.

A property of Eq. (7) important for us is that the guenched disorder average can be calculated on the level of single graphs as long as the disorder is uncorrelated. This is related to the fact that the method considers and counts weak embeddings of the graph into the lattice-i.e., embeddings where different bonds of a graph are always mapped to different bonds of the lattice. This is in contrast to the free embeddings used in linked-cluster expansions. Here, different vertices and bonds of the graph may correspond to the same vertex or bond of the lattice. Therefore in order to calculate the disorder average one has to classify the free embeddings of a graph according to their correspondence to embeddings of a collapsed graph (where some edges of Gare identified). This is essentially the algorithm proposed in Ref. 13 where the collapsed graphs are called "multiple-line graphs." This method has not yet been used for actual calculations of disordered systems, presumably due to its combinatorial complexity.

TABLE I. Number of star graphs with $N \ge 8$ links and nonvanishing embedding numbers on Z^d. For N=1, 4, 6, and 7 only a single star graph exists.

Order N	8	9	10	11	12	13	14	15	16	17	18	19	20	21
No. in $d=3$	2	3	8	9	29	51	136	306	856	2237	6431	18487	55302	165730
No. in $d=4$ and 5	2	3	8	9	29	51	142	330	951	2561	7622	22688		

For other series generation methods such as, e.g., the finite-lattice method which holds the world record for the pure three-dimensional (3D) Ising model¹⁴ or methods using Schwinger-Dyson equations,¹⁵ no practical generalization to disordered systems is known.

For the generation of graphs we employed the NAUTY package by McKay¹⁶ which makes very fast isomorphism tests by calculating a canonical representation of the automorphism group of the graphs. By this means, we classified all star graphs up to order 21 that can be embedded in hypercubic lattices; see Table I. For each of these graphs we calculated their weak embedding numbers for *d*-dimensional hypercubic lattices (up to order 17 for arbitrary *d*, order 19 for dimensions $d \leq 5$, and order 21 for $d \leq 3$). For this embedding count we implemented a refined version of the backtracing algorithm by Martin,¹² making use of a couple of simplifications for bipartite hypercubic lattices \mathbb{Z}^d . After extensive tests to find the optimal algorithm for the innermost loop, the test for collisions in the embedding, we ended up using optimized hash tables.

In order to calculate the contribution W(G) of a graph G of order N to the susceptibility series, one needs the partition sum $Z(\{J_{ij}\}|G)$ and the matrix of all spin-spin correlation functions $M_{kl}(\{J_{ij}\}|G) = \operatorname{Tr} \delta_{s_k,s_l} e^{-\beta H(J_{ij})}$ as polynomials in the N variables J_{ij} . This is achieved by using the cluster representation

$$Z \propto \sum_{C} 2^{c(C)} \prod_{\langle ij \rangle \in C} \frac{2v_{ij}}{1 - v_{ij}},\tag{8}$$

$$M_{kl} \propto \sum_{C_{kl}} 2^{c(C)} \prod_{\langle ij \rangle \in C} \frac{2v_{ij}}{1 - v_{ij}},\tag{9}$$

where the sum in Eq. (8) goes over all clusters $C \subseteq G$ which have only vertices with an even number of bonds and in Eq. (9) the sum is restricted to all clusters $C_{kl} \subseteq G$ in which the vertices k and l have an odd number of bonds and all other have an even number of bonds. The exponent c(C)counts the number of connected components of C. A graph with N bonds gives rise to 2^N clusters: every bond may be present or absent. The clusters can therefore be numerated by N-bit integers. These 2^N integers can be sorted in such a way that two consecutive numbers differ by exactly one bit (corresponding to the addition or deletion of one bond), an algorithm known as the "Gray code."¹⁷ This gives a simple algorithm for the calculation of the cluster sums in Eqs. (8) and (9).

(i) Start with the full graph C=G, store the coordination number modulo 2 ("coordination bit") for every vertex, and

count the total number r of odd vertices. Execute steps (b) and (c) from below for this cluster configuration.

(ii) Iterate over all other $2^N - 1$ Gray codes C.

(a) Calculate the next Gray code (cluster configuration). Compared to the previous code, exactly one bond was added or deleted. Invert the coordination bit of the two involved vertices and calculate the change in r.

(b) If r=0, then add $\prod_{n \in C} w_n$ to Z. The product has a factor $w_n = 2v_{ij}/(1-v_{ij})$ for every nonzero bit n in C.

(c) If r=2, then add $\prod_{n \in C} w_n$ to M_{kl} where k, l are the two odd vertices.

The prefactor $2^{c(C)}$ is taken into account by monitoring the change in the number of connected components c(C) in each iteration step.

The further steps for the calculation of the susceptibility series are the following.

(i) Inversion of the Z polynomial as a series in the $\{v_{ij}\}$ up to the desired order.

(ii) Averaging over quenched disorder,

$$N_{kl}(G) = [M_{kl}/Z]_{P(J)},$$

resulting in a matrix of polynomials in p and v.

(iii) Inversion of the matrix N_{kl} and subgraph subtraction,

$$W_{\chi}(G) = \sum_{k,l} (N^{-1})_{kl} - \sum_{G' \subset G} W_{\chi}(G').$$

(iv) Collecting the results from all graphs,

$$1/\chi = \sum_G E(G; \mathbb{Z}^d) W_{\chi}(G).$$

All calculations are done in arbitrary-precision integer arithmetic using the open source library GMP. For the polynomial arithmetic we developed our own optimized C++ template library using a degree-sparse representation of polynomials as linked lists.¹⁸ The calculations took around two CPU years on an Opteron Linux Cluster.

IV. SERIES ANALYSES

The estimate of critical parameters from a hightemperature series involves extrapolation from a finite number of exactly known coefficients to the asymptotic form of the function. Many such extrapolation techniques have been developed and tested for different series and are comprehensively reviewed in Ref. 19. These extrapolation techniques are not rigorous. They make some assumptions about the expected form of the singularity at the critical temperature. Field-theoretic techniques like the ϵ expansion have similar problems. In order to get a reliable picture, we will take into account several criteria, such as convergence of the analysis, scatter of different approximants, number of defective approximants, and agreement between different extrapolation methods.

The basic methods we use are DLog-Padé approximation and inhomogeneous differential approximants (IDA's).¹⁹ In order to analyze confluent nonanalytic and logarithmic corrections, these methods are applied to suitably transformed forms of the series. The parameters of these transformations are fine-tuned according to the criteria listed above, a technique pioneered in Ref. 20.

Usually, error estimates rely on the scatter of the results of extrapolations with different parameters (like [N/M] Padé approximants for different values of N and M). In the cases where we have a quite large number of Padé or differential approximants, we quote the usual two standard deviations as statistical errors of our results. In the case of the M1 and M2 analyses, our error estimates come from estimating the stability and convergence of the analysis under parameter fine-tuning and we consider them to be comparable to the usual two standard deviation error indications. Nevertheless, this may seriously underestimate systematic errors coming from wrong assumptions about the structure of the singularity.

We obtain from the star-graph technique series in two variables v and p. Since the algorithm involves inversion of polynomials (and of matrices of polynomials), one has to find a consistent truncation criterion for the resulting series. The crucial observations are that (a) the coefficient matrix a_{mn} of the resulting series is triangular (cf. the Appendix), i.e., the series is of the form

$$\chi(p,v) = \sum_{n=0}^{\infty} \sum_{m=0}^{n} a_{mn} q^m v^n \text{ where } q = 1 - p, \quad (10)$$

and (b) the contribution of a graph of order *N* starts with terms of order $q^N v^N$. This allows different consistent truncation schemes. In scheme *A* we calculate series which are correct up to a given order *N* in *v*; i.e., we calculate all nonvanishing coefficients a_{mn} with $n \le N$. In scheme *B*, we calculate all nonvanishing coefficients a_{mn} which satisfy $m+n \le 2N$.

Both schemes are useful in different regions of the parameter space. At small and medium disorder p we approach the critical point by extrapolating in v for constant values of p. Therefore we use the series calculated according to truncation scheme A in the form

$$\chi(v|p=\text{const}) \propto \sum_{n=0}^{N} \left(\sum_{m=0}^{n} a_{mn} q^{m}\right) v^{n} = \sum_{n=0}^{N} c_{n} v^{n}.$$
 (11)

Near the percolation threshold $p \leq p_c$ this gives less and less satisfactory results. As Eq. (6) and Fig. 1 show, p=const lines are reaching the critical line at a smaller and smaller angle. In this region, it is better to extrapolate along the locus w=q/v=const. This is achieved by taking the series coefficients calculated with scheme *B*:

$$\chi(v|w = \text{const}) \propto \sum_{m+n \le 2N} a_{mn} w^m v^{n+m} = \sum_{n=0}^{2N} d_n v^n. \quad (12)$$

The analysis of the scheme *B* series brings much better results than scheme *A* in the highly diluted region $p \leq p_c$. But the quality of the analysis is still lower (e.g., the scatter of different Padé approximants is larger) than in the regions with small or medium dilution. This is not surprising since we cannot construct from our data a series consistently truncated in *p*. This would be necessary in order to extrapolate along the locus v=const and study the percolation transition directly. Nonetheless, a reliable estimate of the transition temperature v_c is possible up to $p \approx p_c$, giving the phase diagram in Fig. 1.

A. Five dimensions

The analysis of the 19th-order series for the susceptibility of the 5D bond-diluted Ising model is a nice warmup in order to get an impression of the quality of different analysis methods. Unbiased DLog-Padé and IDA's along different p=const loci give values of γ between 1.02 and 1.04 for a wide range of dilutions p=0-0.7 with a slightly increasing tendency.

This effect—an overestimate of γ in a naive analysis not taking into account confluent corrections—is well known from the 3D pure Ising model. A good illustration is Fig. 2 in Ref. 21: whereas the results for many different theories in the Ising universality class (ϕ^4 , etc.) converge to $\gamma \approx 1.237$, even 25th-order series for the Ising model give $\gamma \approx 1.244$. The remedy is the use of analysis methods tailored for confluent nonanalytic corrections,

$$f(v) \sim A(v_c - v)^{-\gamma} [1 + A_1(v_c - v)^{\Delta_1} + \cdots], \qquad (13)$$

such as the methods from Ref. 20 called M1 and M2. The method M1 uses DLog-Padé approximants to

$$F(v) = (v_c - v)\frac{df}{dv} - \gamma f(v), \qquad (14)$$

which has a pole at v_c with residue $\Delta_1 - \gamma$. For a given trial value of v_c the graphs of Δ_1 versus input γ are plotted for different Padé approximants and by adjusting v_c a point of optimal convergence is searched.

The *M*2 method starts with a transformation of the series in *v* into a series in $y=1-(1-\frac{v}{v_c})^{\Delta_1}$ and then Padé approximants to

$$G(y) = \Delta_1 (1 - y) \frac{d}{dy} \ln F(y)$$
(15)

are calculated which should converge to γ as $y \rightarrow 1$ —i.e., $v \rightarrow v_c$. These methods are especially useful when taken as biased approximants with a given value of γ or Δ_1 as input.

Using the M2 method we find over a large range of the disorder strength, p=0-0.7, excellent convergence of the Padé approximants with a nearly *p*-independent value of Δ_1 . As an example, Fig. 2 shows an M2 plot at dilution p=0.5 from which we read off $\gamma=1.001(1)$, $\Delta_1=0.51(2)$ and determine $v_c=0.227$ 498. Our overall estimate for Δ_1 for all dis-

FIG. 2. *M*2 analysis (γ as function of Δ_1) for the *p*=0.5 diluted 5D Ising model at v_c =0.227 498 based on 15 different [*N*/*M*] Padé approximants.

order strengths p=0-0.7 is $\Delta_1=0.50(5)$. The results of the M1 method are compatible with this but have poorer convergence.

For the pure (p=0) 5D Ising model our critical values obtained from the 19th-order series with the M2 analysis biased with $\gamma=1$ are $v_c=0.113425(3)$, $\Delta_1=0.50(2)$. As usual, the errors are estimates of the scatter of different Padé approximants. This should be compared with the value from Monte Carlo (MC) simulations²² of $\beta_c=0.1139152(4)$ —i.e., $v_c=0.1134250(4)$, which is in perfect agreement.

B. Four dimensions

Four is the upper critical dimension of the Ising model. Without impurities the scaling behavior of the susceptibility and specific heat is thus expected to exhibit at the critical point logarithmic corrections. With $t \equiv |1 - T/T_c|$, the precise form reads as^{23–26}

FIG. 3. Logarithmic exponent δ as function of the leading exponent γ for the pure 4D Ising model via unbiased M3 approximants at v_c =0.148 607. A pronounced clustering of the different [N/M] Padé approximants around the point $\gamma \approx 1.019$, $\delta \approx 0.34$ is clearly observed.

$$\chi \sim t^{-1} |\ln t|^{1/3}, \tag{16}$$

$$C \sim |\ln t|^{1/3},$$
 (17)

where a nonsingular background term in C has been omitted. For the disordered case it was shown long ago^4 by a RG analysis that the critical behavior is modified to take the form

$$\chi \sim t^{-1} \exp[D|\ln t|^{1/2}],$$
 (18)

$$C \sim - |\ln t|^{1/2} \exp[-2D|\ln t|^{1/2}],$$
 (19)

where $D = \sqrt{6}/53 \approx 0.336$. The crossover to mean-field behavior as well as higher-loop corrections²⁷ modify this unusual exponential term by factors of the form $|\ln t|^{\Delta_1}$. Notice that the expression in Eq. (19) approaches zero for $t \rightarrow 0$ such that *C* is no longer logarithmic divergent but stays finite in the presence of disorder.

1. Pure Ising model

Due to the logarithmic corrections in Eqs. (16) and (17), a special treatment of the series is needed. The analysis of logarithmic corrections of the general form

$$f(v) \sim (v_c - v)^{-\gamma} |\ln(v_c - v)|^{\delta}$$

$$\tag{20}$$

is possible by²⁸ calculating approximants for

$$F(v) = (v_c - v) \ln(v_c - v) \left[\frac{f'(v)}{f(v)} - \frac{\gamma}{v_c - v} \right], \qquad (21)$$

where one expects for singularities of the form (20) that $\lim_{v\to v} F(v) = \delta$. In what follows we call this the *M*3 method.

The estimates for the pure 4D Ising model based on our 19th-order series are (a) unbiased estimate, Fig. 3, $\gamma = 1.019(1), \delta = 0.34(1), v_c = 0.148\ 607(10)$ and (b) biased to $\gamma = 1$, Fig. 4, $\delta = 0.429, v_c = 0.148\ 583(3)$. This should be

FIG. 4. Logarithmic exponent δ as function of v_c for the pure 4D Ising model via M3 approximants biased to $\gamma=1$. From the clustering of the [N/M] Padé approximants one reads off $v_c \approx 0.148583$, $\delta \approx 0.429$. When assessing the clustering property notice that the y scale is 10 times finer than in Fig. 3.

FIG. 5. Logarithmic exponent δ as function of v_c for the p =0.4 diluted 4D model, results of an M3 analysis.

compared to the analysis in Ref. 29 of a 17th-order series³⁰ which gave $v_c = 0.148588$ and to MC simulations³¹ which found $\beta_c = 0.149697(2)$ —i.e., $v_c = 0.148589(2)$. While the agreement of the estimates for v_c is excellent, this analysis also shows how difficult it is to obtain reliable estimates for the critical exponent δ of the logarithmic correction term.

2. Bond dilution

An extensive MC study of the *site*-diluted 4D model was done in Ref. 23. The authors found data compatible with the theoretical prediction of a Gaussian fixed point with logarithmic corrections, but a precise fit of the logarithmic corrections was not possible.

A modification of the M3 analysis method which we refer to as M3a is able to take into account the specific form of Eq. (18): For

$$f(v) \sim (v_c - v)^{-\gamma} \exp[D|\ln(v_c - v)|^{1/2}],$$
 (22)

we calculate approximants to

$$F(v) \sim (v_c - v) [-\ln(v_c - v)]^{1/2} \left[\frac{f'(v)}{f(v)} - \frac{\gamma}{v_c - v} \right], \quad (23)$$

which should behave as $\lim_{v \to v_c} F(v) = D/2$. We made an extensive analysis of our 19th-order susceptibility series assuming the three forms (13), (20), and (22). It turns out that, while form (13) is not acceptable, both forms of logarithmic corrections allow a fit of the series data, both with a disorder-dependent exponent δ or D, respectively. The quality of the M3a fits is, however, better than for the M3 fits. This is demonstrated in Figs. 5 and 6 where equal ranges of $v_c (\Delta v_c = 0.0003)$ and of the exponent ($\Delta \delta = \Delta D = 0.1$) are shown.

We interpret this as an indication for the validity of the RG prediction, Eq. (18). Figure 7 shows the dilution dependence of our estimates for the critical parameter D. It illustrates the difficulty in differentiating between a behavior of the form (20) and the form (22) by giving a nonzero result for D at p=0. It is nevertheless quite impressive that we can see at all such weak correction terms to the leading singularity and even estimate the parameters.

FIG. 6. Parameter *D* as function of v_c for the p=0.4 diluted 4D model, results of an *M*3a analysis.

For the specific heat, one expects the weak logarithmic singularity in the pure case [Eq. (17)] to be washed out by the disorder. An analysis of the free energy series $F(v) = \sum a_i(p)v^i$ is usually more difficult and gives less satisfactory results compared to the susceptibility series. One loses two orders in v by calculating $C = -\beta^2 \frac{d^2 \beta F}{d\beta^2}$ and, more importantly, on bipartite lattices the series for F(v) includes only even powers of v. So it has to be considered as a much shorter series in v^2 . In four dimensions we calculated F(v, p) up to order 18, which gives a series for $C(v^2)$ of order 8 in v^2 .

Another difficulty is that the nonsingular background terms are more influential in this case. Therefore DLog-Padé approximants show very poor convergence and one has to use IDA's which are able to take background contributions into account. By this method, polynomials $P_N(v)$, $Q_M(v)$, and $R_L(v)$ (of order N, M, and L, respectively) are determined such that

FIG. 7. Parameter *D* as function of *p* for the diluted 4D model, results of an *M*3a analysis. The horizontal line at D=0.336... shows the predicted value $\sqrt{6/53}$.

FIG. 8. Critical exponent of $\partial^4 f(v) / \partial v^4$ as function of p for the diluted 4D model.

$$P_N(v)\hat{D}f(v) + Q_M(v)f(v) + R_L(v) = o(v^{(N+M+L)}), \quad (24)$$

where many different triples (N, M, L) with $N+M+L \leq (\text{order of } f)$ and two different variants of the differential operator \hat{D} , either $\hat{D}_1 = vd/dv$ or $\hat{D}_2 = d/dv$, are used. The critical point v_c is then given by the smallest positive real root of $P_N(v)$ and the critical exponent by $Q_M(v_c)/P'_N(v_c)$.

We applied IDA's tailored to powerlike singularities $\sim t^{-\alpha-2}$ to the fourth derivative $\partial^4 f(v)/\partial v^4$. The results are shown in Fig. 8. In the pure case we find a result consistent with $\partial^4 f(v)/\partial v^4 \sim (v_c - v)^{-2}$, indicating a logarithmic singularity in $C \sim \partial^2 f(v)/\partial v^2$. At nonzero values of the dilution parameter *p* the singularity of the fourth derivative of *f* is clearly weaker than $(v_c - v)^{-2}$, indicating the absence of a divergence in the specific heat in the disordered case.

C. Three dimensions

Let us finally turn to the physically most important case of three dimensions. The quest for a determination of the prop-

FIG. 9. Critical exponent γ as function of *p* for the diluted 3D model obtained from about 300 DLog-Padé and inhomogeneous differential approximants for each dilution value.

FIG. 10. Critical exponent γ as function of p for the diluted 3D model obtained from series analyses with methods M1 and M2 (see text for details). The data of Fig. 9 (Pade/IDA) are also shown for comparison.

erties of the expected random fixed point in the 3D disordered Ising model is already rather long. A comprehensive compilation of results can be found in Refs. 32–34, showing a wide scatter in the critical exponents of different groups, presumably due to large crossover effects. Recent MC simulations^{35–38} provide evidence for the random fixed point but also show large crossover effects due to the interference with the pure fixed point for $p \rightarrow 0$ and with the percolation fixed point for $p \rightarrow p_c$ (recall the discussion in Sec. II B).

Early attempts using series expansions^{39,40} already indicated that the series are slower converging and more difficult to analyze than in the pure case. A review of earlier work can be found in Ref. 41. Series analysis in crossover situations is, in fact, extremely difficult. If the parameter p interpolates between regions governed by different fixed points, the exponent obtained from a finite number of terms of a series expansion must cross somehow between the two universal values and does this usually quite slowly.⁴² The mere existence of a plateau in $\gamma(p)$, however, is an indication that here a truly different critical behavior is seen.

Our results are obtained from a large number of DLog-Padé and inhomogeneous differential approximants (around 300 for every dilution value) applied to the 21st-

TABLE II. Summary of results. In three dimensions, longer series for the pure Ising model exist; therefore, we do not quote here our results for v_c or γ .

	Model	v _c	γ	Confluent correction
5D	Pure Disordered	0.113 425(3)	1.001(1) 1.001(1)	Powerlike, $\Delta_1 = 0.50(2)$ Powerlike, $\Delta_1 = 0.50(5)$
4D	Pure Disordered	0.148 607(3)	1.019(20) Form o	Logarithmic, $\delta = 0.34(2)$ of Eq. (18) confirmed
3D	Disordered		1.305(5)	

72 73 -24 534 -24 1534 -24 192 1608 8138 -24 192 1608 8138 -24 192 1608 8138 -24 192 1608 8138 -24 192 1608 8138 -24 192 1608 184912 -24 192 1608 184912 -24 192 1344 8400 -1400 -24 192 1344 8400 -1414 -240 192 2954 -173404 1975496 -24 192 1344 19704 1975496 -1704172 -24 192 1026 14130 2956296 -91143199 -24 192 103695176 19131904 205562110 9897335374 -24 192 1088 2956456 996951728 2993613296 2933163194 -24 192	72 334 -24 192 1608 81318 -24 -192 1608 81318 -24 -192 1608 81318 -24 -192 1608 81318 -24 -192 1608 8134 -24 -192 1608 8134 -24 -192 -608 1849126 -24 -974 -67632 -93936 -264 -974 -259560 41732406 -264 974 -59956 41732406 -27 108 1202 59436 29936 -284 108 2944 127694 17752064 42970830 -284 1092 5440 29364793 501431904 20955011 -284 108 1296 -91444 19765936 59143190 -284 108 1032 64560 243464 -126440 -17644 201431904 20955051 4090138374 -284<	1																	
-10 3534 -24 192 1602 1 <	21 334 -24 -192 1603 81318 -24 -192 -1608 81318 -24 -192 -1608 81318 -24 -192 -1608 10444 387438 24 192 -1608 10146 387438 24 192 -1608 -10356 -6732 935358 24 192 -264 -9744 -125664 4173240 9364579 24 192 1344 8400 -2644 -1295604 41732406 -2964354 24 192 1344 94015 19764935 -25952206 -914431904 2964578 24 192 1344 1976493 297443104 19765936 -93645794 -9364578 24 192 1946 1976494 1976494 19765936 -993645794 -93645364 24 192 1963 1926422 19264329 -93645368 -936937356 -93693756 -93693	726																	
-10 100 1002 1	-10 100 <td>-24</td> <td>3534</td> <td></td>	-24	3534																
-10 100 8131 0 -192 -1608 87438 1 -102 -1608 -1044 387438 24 0 -1608 -07320 1849126 24 10 -1608 -0744 -5653 18756941 24 102 -240 -60912 -399704 -229560 41732406 24 102 1344 8400 -1440 -339936 -226544 197659930 24 102 1344 8700 -1440 -39936 -2295744 197559950 -9714432 24 103 64560 341568 -17044720 93645798 -429708830 -737343110 249 104 1702 2166044 17752164 -17924064 -119261913 -9837385374 -6733743110 249 108 102 64560 2148076 17792128 29937657110 -239375376 -5505628008 -5505628008 -5505628008 -5733743110 210	-19 100 8131 0 -192 -1608 8134 24 0 -1608 -1044 38743 24 0 -1608 -1036 -5730 1849126 24 102 -264 -9744 -57532 8779614 -1776404 24 102 -264 -5974 -1776405 -70404720 93694578 24 102 1344 -66912 -39778 -70404720 93694578 24 192 1608 1026 51480 -259566 -9916694 19752964 4429708830 241 18807 -2564 -10441 2369457 -7044472 2014331904 20955627110 241 192 6456 -9156964 -17644472 -7044472 -2014331904 20955627110 241 1926 25454 -5166044 17365128 -9980137536 55505058008 4673374110 241 1926 2492464 -51644200 -506144472	-24	-192	16926															
0 -192 -1608 -10464 387.38 24 0 -1608 -0732 1849126 24 192 -264 -974 -6763 -39538 8779614 24 192 -240 -69012 -397704 -1733406 197763950 36934798 24 192 1344 8400 -1440 -339956 -17360946 1773406 24 192 1608 10206 51480 26544 1976502 -369458 -7040420 936945788 24 192 1608 10032 64560 31568 -206448 -77522064 4429708830 46733374110 241 100 1608 10032 64560 2195696 -99165048 -77522064 4129708331 2995567110 241 192 108 1704 27522064 -510433194 29955627110 893335374 241 192 108 2492662296 -99162048 27552064 4297083358 466331731	0 -192 -1608 -10464 38743 24 0 -1608 -10536 -6/532 38743 877961	-24	-192	-1608	81318														
24 0 -1608 -10536 -67320 1849126 24 192 -244 -9744 -57632 -395328 8779614 24 192 -246 -9744 -57632 -395328 8779614 24 192 1080 -240 -60912 -397740 -2756949 19756950 36945798 -70404720 36945798 -70404720 36945798 -70404720 36945798 -70404720 36945798 -70404720 36945798 -70404720 36945798 -70404720 36945798 4729708309 467333743110 -77552064 41297083596 -595627110 -7666243184 9893738374 46733743110 -7666243179 -7666243184 9893738374 46733743110 -7656626008 46733743110 -76566260308 46733743110 -7666243184 29931383374 46733743110 -7656628008 46733743110 -7656628008 46733743110 -769623768 -2696236768 249331631732 -2998138736 46733743110 -769623676808 46733743110 -7666638008 467333743110 -	24 0 -1608 -10536 -67320 1849126 24 192 -264 -9744 -67632 -395338 8779614 24 192 -240 -60912 -397704 -27660-44 19765950 1976595627110 16765962627110 16766944 177260248 2976562627110 2955627110 2955627110 1695562627110 1695694313904 205562627110 295562627110 295562627110 295562627110 295562627110 295562627110 29556627110 29556627110 29556627110 29556627110 29556627110 29556627110 29556627110 29556627110 29556627110 29556627110 29556627110 29556627110 29556627110 29556627110 29556627110 29556627110 29556627110 29556627110 29566292969 29591357526 295013	0	-192	-1608	-10464	387438													
24 192 -264 -9744 -67632 -39538 8779614 24 192 1080 -240 -60912 -397704 -2299560 41732406 24 192 1080 -240 -60912 -397744 -1766944 19765950 41732406 -70404720 936945798 -70404720 936945798 -70404720 936945798 -70404720 936945798 -70404720 936945798 -70404720 936945798 -70404720 936945798 -70404720 936945798 -70404720 936945798 -70404720 936945798 -70404720 936945798 -70404720 936945798 -70404720 936945798 -7043784 9837385374 -7033743104 2095627110 -704168 -704168 -704148472 -2014331904 2095623118 953736374 1733743101 -704168 -704168 -704148472 -2014331904 2095624018 46733743110 -704168 8071692 1795048 46733743110 -704168 704168 704168 807189264 -19920431847 -29133693168 <	24 192 -264 -9744 -67632 -395328 8779614 24 192 1080 -240 -60912 -397704 -2299560 41732406 24 192 1080 -240 -60912 -397704 -2766944 197659950 24 10 1608 10206 51480 25544 -1766946 19765950 -367148472 -2014331904 20955627110 24 102 1032 64560 341568 -377522064 4429708830 -367148472 -2014331904 20955627110 24 192 1080 1714 2164200 356148472 -2014331904 20955627110 -383743100 210 1914 19761218 25564264 17926128 -5566263113 -5565627110 -285316855968 -2837343104 210 1014 73051512 12664264 129369378 -55050628008 46733743110 210 1114 73051512 126667264 12936953178 -593516855968 -530516859368	24	0	-1608	-10536	-67320	1849126												
24 192 108 -240 60912 -397704 -2295560 41732406 0 192 1344 8400 -1440 -33936 -2295744 12766944 19765950 -24 0 1608 10296 51480 26544 -1886936 -70404720 936945798 -37732064 4429708330 -24 -192 264 10032 64560 31568 2482464 -51644200 -367148472 2014331904 2095562110 -24 -192 -1080 -11440 80028 2482464 -51644200 -367148472 2014331904 20955623184 98937383374 -24 -192 -1080 -11448 360192 2482464 -51644200 -367148472 2014331904 20955623184 98937383374 -24 -192 -1080 -11448 73051512 12567264 -193363178 98937383374 -24 -192 -1080 -124460 17796128 255642368 45673663686 253642364 -553	24 192 1080 -240 60912 -397704 -2295560 41732406 0 192 1344 8400 -1440 -33936 -2295744 12766945 936945798 -24 0 1608 10296 51480 26544 -12660446 770404720 93694579830 -24 -192 2164 10032 64560 31568 2482464 -51644200 93671431904 20955621110 -24 -192 -1040 -11704 60024 427920 2482464 -51644200 -55712864 467333743110 -24 192 -1080 -11704 60024 427920 2482464 -51644200 -5571286435964 467333743110 -24 192 -11704 60024 427920 21264204 -70433194 73051512 12565045184 98937385374 46733743110 -24 192 -11448 360192 2757046 17730524 -121361732 -9980137536 -559564350368 45733743110 <t< td=""><td>24</td><td>192</td><td>-264</td><td>-9744</td><td>-67632</td><td>-395328</td><td>8779614</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	24	192	-264	-9744	-67632	-395328	8779614											
0 134 8400 -1440 -33936 -2295744 -12766946 19765950 -24 0 1608 10296 51480 26544 -1886928 -70404720 936945798 -24 -192 2664 1032 64560 31568 2915666 -9915696 -9915096 -97732064 4429708830 2995567110 -24 -192 -1080 -1704 60024 247920 26644200 -567148472 201433190 2095567110 24 -192 -1080 -11704 60024 2479200 17251261 -1293631728 29980137356 555050628008 467333743110 24 102 0 -8044 1795132 125567264 -1293631728 9980137356 255050628008 467333743110 24 102 -8042 -1293631728 25675246 -1293631728 2980137356 25336642968 2294010 24 102 -8048 -8003738264 129361729 -1293631728 29980137356 2533662968 </td <td>0 134 8400 -1440 -33936 -2295744 -12766944 19765950 -24 0 1608 10296 51480 26544 -1866928 -70404720 936945798 -24 -192 264 1032 64560 341568 2915696 -99165048 -37752064 4429708830 -24 -192 -104 60024 427920 26546 -9915696 -9162048 -37752064 4429708830 -24 -192 -108 -1704 60024 2479200 2482464 -51644200 -5671310 2995527110 -21 -21 -1104 -11044 27920 2482464 -51644200 -567623064 41297083374 2993335374 -21 -21 -11044 73051512 125567264 -1295631738 9993335374 267360528008 467333743110 -21 -21 -21 -201437128 2095623762 -2193631728 2990137536 -55056628008 467333743110 -21 -21<td>24</td><td>192</td><td>1080</td><td>-240</td><td>-60912</td><td>-397704</td><td>-2299560</td><td>41732406</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	0 134 8400 -1440 -33936 -2295744 -12766944 19765950 -24 0 1608 10296 51480 26544 -1866928 -70404720 936945798 -24 -192 264 1032 64560 341568 2915696 -99165048 -37752064 4429708830 -24 -192 -104 60024 427920 26546 -9915696 -9162048 -37752064 4429708830 -24 -192 -108 -1704 60024 2479200 2482464 -51644200 -5671310 2995527110 -21 -21 -1104 -11044 27920 2482464 -51644200 -567623064 41297083374 2993335374 -21 -21 -11044 73051512 125567264 -1295631738 9993335374 267360528008 467333743110 -21 -21 -21 -201437128 2095623762 -2193631728 2990137536 -55056628008 467333743110 -21 -21 <td>24</td> <td>192</td> <td>1080</td> <td>-240</td> <td>-60912</td> <td>-397704</td> <td>-2299560</td> <td>41732406</td> <td></td>	24	192	1080	-240	-60912	-397704	-2299560	41732406										
-24 0 1608 10.206 51480 26544 -12680496 -70404720 936945798 -24 -192 264 10032 64560 341568 2915696 -69162048 -37752064 4429708330 -24 -192 -1080 -1704 60024 4293600 1956416 -51644200 -561444472 -2014331904 2095627110 -24 -192 -1080 -1144 -14448 360192 2482464 -51644200 -5567264 1291961792 10550435184 98937385374 46733743110 24 192 1080 -12144 -14448 360192 2493600 125567264 -129363178 -9980137536 -5850568008 46533743110 24 10 -1080 -13440 -867764 125657264 1293631753 -5850568008 46537688 25040019 24 192 0 -884 -5751281212 125567264 1293631753 -5850568008 46537688 267040019 24 192	-24 0 1608 10.206 51480 25544 -1280496 -70404720 936945798 -24 -192 264 10032 64560 341568 -5915696 -69162048 -37752064 4429708330 -24 -192 -1080 -1704 60024 429566 -9915696 -69162048 -37752064 4429708330 -24 -192 -1080 -1704 60024 429566 -51644200 -51644200 -51644200 -516431994 20955677110 -24 0 -1080 -12144 -14448 360192 2493600 17926128 -259623976 -1931961792 1055043184 98937385374 -24 0 -1080 -12144 144790144 7305121 126567264 -1293631728 -9980137536 -5505628008 467378374 -24 192 0 -1080 -132464 73051512 126567264 -1293631728 -9980137536 -52950562808 4673782 -24 192 108	0	192	1344	8400	-1440	-339936	-2295744	-12766944	197659950									
-24 -192 264 10032 64560 341568 -9915696 -69162048 -377522064 442970830 -24 -192 -1080 -1704 60024 427926 -9143472 -2014331904 2095567110 0 -192 -1080 -1144 -14448 360192 2482464 -51644200 -550422976 -19331104 2095667110 24 10 -10180 -11244 -14448 360192 2482464 75051512 125667264 -193331728 9937385374 9837335374 24 10 -1080 -13440 -80928 1840776 14790144 73051512 125567264 -1293331728 -9980137556 -55050628008 467333743110 24 192 0 -8534 -9980137586 -5205364368 -145578029 24 192 0 -888 -8785136 45867760 457439184 2361937596 -520536432784 -145578029 24 192 108 18407 -54862760 <td< td=""><td>-24 -192 264 10032 64560 341568 -9915696 -69162048 -377522064 442970830 -24 -192 -1080 -1704 60024 427926 -915464 -51644200 -56148472 -2014331904 2095567110 0 -192 -1080 -1704 60024 4279360 1250416 17926128 -559622976 -1931961792 -10506435184 9837385374 24 0 -10140 -80028 132024 1840776 17750518 -299613758 -9980137556 -55556628008 467333743110 24 192 0 -1080 -13440 -880776 1295631728 -1093633758 -55556628008 467333743110 24 192 0 -10340 -55050628008 46733374310 -55556628008 46733374310 24 192 0 -1080 -131480 977904 25536628008 46733374310 24 192 0 -108168 420437864 -1293633758 -21215161136<!--</td--><td>-24</td><td>0</td><td>1608</td><td>10296</td><td>51480</td><td>26544</td><td>-1886928</td><td>-12680496</td><td>-70404720</td><td>936945798</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td></td<>	-24 -192 264 10032 64560 341568 -9915696 -69162048 -377522064 442970830 -24 -192 -1080 -1704 60024 427926 -915464 -51644200 -56148472 -2014331904 2095567110 0 -192 -1080 -1704 60024 4279360 1250416 17926128 -559622976 -1931961792 -10506435184 9837385374 24 0 -10140 -80028 132024 1840776 17750518 -299613758 -9980137556 -55556628008 467333743110 24 192 0 -1080 -13440 -880776 1295631728 -1093633758 -55556628008 467333743110 24 192 0 -10340 -55050628008 46733374310 -55556628008 46733374310 24 192 0 -1080 -131480 977904 25536628008 46733374310 24 192 0 -108168 420437864 -1293633758 -21215161136 </td <td>-24</td> <td>0</td> <td>1608</td> <td>10296</td> <td>51480</td> <td>26544</td> <td>-1886928</td> <td>-12680496</td> <td>-70404720</td> <td>936945798</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-24	0	1608	10296	51480	26544	-1886928	-12680496	-70404720	936945798								
-24 -192 -1080 -1704 60024 427920 2482464 -56144200 -567148472 -2014331904 20955627110 0 -192 -1080 -1144 -14448 360192 2493600 12550416 17926128 -259623976 -1931961792 -10550435184 98937385374 24 0 -1080 -13440 -80928 -1370014 73051512 126567264 -1029631728 -9980137536 -55050628008 467333743110 24 192 0 -8844 -95040 -121480 9797904 82573800 420942768 807789264 -651397592 -51221501136 -283516859648 2204001965 24 192 108 5832 -60888 -705216 -1214800 97799248 -145578028 22640101655 24 192 108 5832 -608434806 -505053068 -51355968 -214001965 24 192 108 5832 -6093137564 2364036486 -1455578208 23640101655 -155516315	-24 -192 -1080 -1704 60024 427920 2062368 2482464 -51644200 -567148472 -2014331904 20955627110 0 -192 -1080 -11444 -14448 360192 2493600 12550416 17926128 -259623976 -1931961792 -10550435184 98937385374 24 0 -1080 -13440 -89928 -132024 1840776 14790144 73051512 126567264 -1293631728 -9980137536 -55050628008 467333743110 24 192 0 -85344 -597660 1214880 9799746 420942768 420942768 -627397592 -51221501136 -283516855968 2204001965 24 192 108 5832 -60888 -705216 -9910368 -887789264 -627397592 -51221501136 -283516835968 2294001965 24 192 108 5837 -6089434800 -30514297802 -144880350848 -14566266 457439184 2361075624 5069434800 -3017202248 -141380350848 -1306684881 20 108 1291181 12978	-24	-192	264	10032	64560	341568	259656	-9915696	-69162048	-377522064	4429708830							
0 -192 -1080 -1144 360192 2493600 12550416 17926128 -25962976 -1931961792 -10550435184 98937385374 24 0 -1080 -13440 -80928 -1320541 1840776 14790144 73051512 126567264 -1293631728 -9980137536 -55050628008 467333743110 24 0 -1080 -550460 -1214880 9797904 82573800 420942768 807789264 -6273975792 -5121501136 -283516855968 2204001965 24 192 1080 5832 -60888 -705216 -3910368 -8858136 457439184 2361075624 560434800 -30136593768 -145578028 20 192 1080 58312 -5612610 420343680 457439184 2361075624 5059434800 -145578028 -145578028 21 1080 58712 -25012512 12656068 236491358 2364001965 -250361429784 -145578028 -14556864851 20 192 1080 </td <td>0 -192 -1080 -1144 -14448 360192 2493600 12550416 17926128 -259623976 -1931961792 -10550435184 98937385374 24 0 -1080 -13440 -580760 -1214880 9797904 82573800 420345754 -55050628008 467333743110 24 192 0 -86344 -550166 -1214880 9797904 82573800 420942768 807789264 -657397592 -51221501136 -283516855968 2204001965 24 192 1080 5832 -60888 -705216 -3910368 -8858136 457439184 236107664 -5123501136 -28351685968 2294001965 24 192 1080 5832 -60888 -705216 -3910368 -8858136 457439184 236107664 -51355036 259561429784 -145578029 20 192 1080 18912 367720 -4371956680 458667560 -2038235680 13097561328 -141380350848 -13056843133 20</td> <td>-24</td> <td>-192</td> <td>-1080</td> <td>-1704</td> <td>60024</td> <td>427920</td> <td>2062368</td> <td>2482464</td> <td>-51644200</td> <td>-367148472</td> <td>-2014331904</td> <td>20955627110</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0 -192 -1080 -1144 -14448 360192 2493600 12550416 17926128 -259623976 -1931961792 -10550435184 98937385374 24 0 -1080 -13440 -580760 -1214880 9797904 82573800 420345754 -55050628008 467333743110 24 192 0 -86344 -550166 -1214880 9797904 82573800 420942768 807789264 -657397592 -51221501136 -283516855968 2204001965 24 192 1080 5832 -60888 -705216 -3910368 -8858136 457439184 236107664 -5123501136 -28351685968 2294001965 24 192 1080 5832 -60888 -705216 -3910368 -8858136 457439184 236107664 -51355036 259561429784 -145578029 20 192 1080 18912 367720 -4371956680 458667560 -2038235680 13097561328 -141380350848 -13056843133 20	-24	-192	-1080	-1704	60024	427920	2062368	2482464	-51644200	-367148472	-2014331904	20955627110						
24 0 -1080 -13440 -80928 -1840776 14790144 73051512 126567264 -1293631728 -9980137536 -55050628008 467333743110 24 192 0 -8544 -95040 -5649760 -1214880 9797904 82573800 420942768 807789264 -627397592 -51221501136 -283516855968 22040019650 24 192 1080 5832 -60888 -705216 -3910368 -8858136 457439184 2361075624 5069434800 -30156593768 -259361429784 -1455780298 0 192 1080 18912 36720 -4512600 -55012512 -63580104 220823568 2449336680 13097561328 30177202248 -141380350648 -1355780248 0 192 1080 28912 -55050230 -422656608 2449336680 13097561328 30177202248 -14138035064 -655481735 10 1080 24744 129811968 12097561328 30177202248 -14138035064 -655481735 <td>24 0 -1080 -13440 -80928 -1840776 14790144 73051512 126567264 -1293631728 -9980137536 -55050628008 467333743110 24 192 0 -8544 -95040 -569760 -1214880 9797904 82573800 420942768 807789264 -627397592 -51221501136 -283516855968 22040019650 24 192 1080 5832 -60888 -705216 -3910368 -8858136 457439184 2361075624 5069434800 -30136593768 -259361429784 -1455780298 20 192 1080 5832 -60888 -705216 -25012512 -65380104 220823568 2449336680 13097561328 30177202248 -141380330848 -1356684851735 21 0 192 1080 28772 -2272584 -28419456 -158605280 -422656608 936811968 12971851368 71238617752 177314558064 -6554817357</td> <td>0</td> <td>-192</td> <td>-1080</td> <td>-12144</td> <td>-14448</td> <td>360192</td> <td>2493600</td> <td>12550416</td> <td>17926128</td> <td>-259622976</td> <td>-1931961792</td> <td>-10550435184</td> <td>98937385374</td> <td></td> <td></td> <td></td> <td></td> <td></td>	24 0 -1080 -13440 -80928 -1840776 14790144 73051512 126567264 -1293631728 -9980137536 -55050628008 467333743110 24 192 0 -8544 -95040 -569760 -1214880 9797904 82573800 420942768 807789264 -627397592 -51221501136 -283516855968 22040019650 24 192 1080 5832 -60888 -705216 -3910368 -8858136 457439184 2361075624 5069434800 -30136593768 -259361429784 -1455780298 20 192 1080 5832 -60888 -705216 -25012512 -65380104 220823568 2449336680 13097561328 30177202248 -141380330848 -1356684851735 21 0 192 1080 28772 -2272584 -28419456 -158605280 -422656608 936811968 12971851368 71238617752 177314558064 -6554817357	0	-192	-1080	-12144	-14448	360192	2493600	12550416	17926128	-259622976	-1931961792	-10550435184	98937385374					
24 192 0 -8544 -95040 -569760 -1214880 979794 82573800 420942768 807789264 -6273975792 -51221501136 -283516855968 22040019650 24 192 1080 5832 -60888 -705216 -3910368 -8858136 46862760 457439184 2361075624 5069434800 -3013659768 -239361429784 -1455780287 0 192 1080 18912 36720 -4512600 -25012512 -63380104 220823568 2449336680 13097561328 30177202248 -141380350848 -13066848518 -24 0 1080 24744 129816 283752 -2272584 -28419456 -158605280 -422656608 936811968 12971851368 71258617752 177314558064 -6554817352	24 192 0 -8544 -95040 -569760 -1214880 9797904 82573800 420942768 807789264 -6273975792 -51221501136 -283516855968 22040019650 24 192 1080 5832 -60888 -705216 -3910368 -8858136 46862760 457439184 2361075624 5069434800 -3013639768 -239361429784 -1455780287 26 192 1080 18912 36720 -437952 -4512600 -25012512 -65380104 220823568 2449336680 13097561328 30177202248 -141380350848 -13066848518 -24 0 1080 28772 -2272584 -28419456 -158605280 -422656608 936811968 12971851368 71258617752 177314558064 -6554817352	24	0	-1080	-13440	-80928	-132024	1840776	14790144	73051512	126567264	-1293631728	-9980137536	-55050628008	467333743110				
24 192 1080 5832 -60888 -705216 -3910368 -8858136 46862760 457439184 2361075624 5069434800 -30136593768 -259361429784 -14557802987 0 192 1080 18912 36720 -437952 -4512600 -25012512 -63380104 220823568 2449336680 13097561328 30177202248 -141380350848 -13066848518 -24 0 1080 24744 129816 283752 -2272584 -28419456 -158605280 -422656608 936811968 12971851368 71258617752 1773155064 -6554817352	24 192 1080 5832 -60888 -705216 -3910368 -8858136 46862760 457439184 2361075624 5069434800 -30136593768 -259361429784 -14557802987 0 192 1080 18912 36720 -437952 -4512600 -25012512 -63580104 220823568 2449336680 13097561328 30177202248 -141380350848 -13066848518 -24 0 1080 24744 129816 283752 -2272584 -28419456 -158605280 -422656608 936811968 12971851368 71258617752 177314558064 -6554817352	24	192	0	-8544	-95040	-569760	-1214880	9797904	82573800	420942768	807789264	-6273975792	-51221501136	-283516855968	22040019650	90	96	06
0 192 1080 18912 36720 –437952 –4512600 –25012512 –63380104 220823568 2449336680 13097561328 3017720248 –141380350848 –13066848518. –24 0 1080 24744 129816 283752 –2272584 –28419456 –158605280 –422656608 936811968 12971851368 71258617752 177314558064 –6554817352	0 192 1080 18912 36720 –437952 –4512600 –25012512 –63580104 220823568 2449336680 13097561328 30177202248 –141380350848 –13066848518. -24 0 1080 24744 129816 283752 –2272584 –28419456 –158605280 –422656608 936811968 12971851368 71258617752 177314558064 –6554817352	24	192	1080	5832	-60888	-705216	-3910368	-8858136	46862760	457439184	2361075624	5069434800	-30136593768	-259361429784	-145578029877	26	76 10398318680694	76 10398318680694
-24 0 1080 24744 129816 283752 -2272584 -28419456 -158605280 -422656608 936811968 12971851368 71258617752 177314558064 -6554817352	-24 0 1080 24744 129816 283752 -2272584 -28419456 -158605280 -422656608 936811968 12971851368 71258617752 177314558064 -6554817352	0	192	1080	18912	36720	-437952	-4512600	-25012512	-63580104	220823568	2449336680	13097561328	30177202248	-141380350848	-13066848518	40	40 -7403140259952	40 -7403140259952 48996301350750
		-24	0	1080	24744	129816	283752	-2272584	-28419456	-158605280	-422656608	936811968	12971851368	71258617752	177314558064	-65548173528	0	80 -6514909866600	30 –6514909866600 –37556614417032

MEIK HELLMUND AND WOLFHARD JANKE

order susceptibility series $\chi(p,v)$ compiled in the Appendix. The resulting estimates for the critical exponent γ shown in Fig. 9, however, do not exhibit any sign for a plateau.

Since confluent corrections are essential to understand crossover situations, we also performed a careful analysis using the M1 and M2 methods which both take such corrections explicitly into account; see Fig. 10. This figure shows results using both $v = \tanh(\beta J_0)$ as well as the coupling βJ_0 as expansion variables (denoted by, e.g., M1/v and M1/J). They give an indication of a plateau around p=0.3-0.4, suggesting the presence of the random fixed point with corresponding value of the critical exponent $\gamma = 1.305(5)$. Here, as usual in extrapolation techniques, the error is estimated from the scatter of different approximants and we are unable to give an estimate of the systematic error of the extrapolation. Our high-temperature series estimate is at least compatible with MC results for site and bond dilution^{35,37,43} which cluster quite sharply around $\gamma_{MC}=1.34(1)$. Field-theoretic RG estimates^{32,44} favor slightly smaller exponents of γ_{RG} =1.32–1.33, while experiments⁴⁵⁻⁴⁷ report values between $\gamma_{exp} = 1.31 - 1.44$; for a more detailed compilation, see, e.g., Table 1 in Ref. 36. Since it would be extremely demanding to further extend the series expansions in the disordered case, better series analysis methods for the case of crossover situations would be clearly desirable.

V. SUMMARY

We successfully applied the method of high-temperature series expansion to the bond-diluted Ising model in several dimensions. The computational effort is vast and increases faster than exponentially with the order of the expansion. But the extensive set of combinatorial data we generated on the way, such as the list of star graphs and their embedding numbers into hypercubic lattices, has a large number of potential applications-for example, to models with other kinds of uncorrelated disorder like spin glasses. On the other hand, Monte Carlo simulations of systems with quenched disorder require an enormous amount of computing time because many realizations have to be simulated for the quenched average. For this reason it is hardly possible to scan a whole parameter range. Using the method of star-graph expansion we obtain this average exactly. Since the relevant parameters (degree of disorder p, spatial dimension d, etc.) are kept as symbolic variables, we can easily study large regions of the phase diagram.

Table II summarizes the main results of this work. Our estimates of the critical temperature for the four- and fivedimensional model are comparable in precision (as well as consistent) with the available Monte Carlo data for the pure case. For the bond-diluted model in four and five dimensions we demonstrated universality. The critical exponent γ keeps its Gaussian value $\gamma=1$ up to the percolation threshold of the underlying lattice, despite the fact that the upper critical dimension of the percolation transition is 6. In five dimensions we also show that the exponent Δ_1 of the confluent correction is universal for a large range of the dilution parameter *p*. In four dimensions we confirm the RG prediction that the weak logarithmic divergence of the specific heat of the pure model disappears in the disordered case due to logarithmic corrections of a special kind. We confirm the presence of these special corrections also in the case of the susceptibility. We furthermore determine the exponent of the logarithmic correction in the pure case with satisfying precision.

The case of three dimensions is, in a sense, the most difficult to analyze. We clearly see that the pure fixed point is unstable and does not describe the random system. Extrapolation methods not taking into account confluent corrections give a value for γ which changes monotonously with p. By using methods tailored to the consideration of confluent corrections we identify a plateau in the curve $\gamma(p)$ with critical exponent $\gamma=1.305(5)$ which we see as evidence for the random critical point.

ACKNOWLEDGMENTS

We thank Joan Adler for introducing us to the art and science of series extrapolation techniques. Support by DFG Grant No. JA 483/17-3 and partial support from the German-Israel-Foundation under Grant No. I-653-181.14/1999 are gratefully acknowledged.

APPENDIX: COEFFICIENTS OF THE 3D SUSCEPTIBILITY

Table III gives complete information for calculating the susceptibility of the 3D bond-diluted Ising model up to the order v^{21} for any dilution p.

*Electronic address: Meik.Hellmund@math.uni-leipzig.de

- [†]Electronic address: Wolfhard.Janke@itp.uni-leipzig.de
- ¹*Phase Transitions and Critical Phenomena*, edited by C. Domb and M. S. Green (Academic, New York, 1974), Vol. 3.
- ²J. Cardy, cond-mat/9911024 (unpublished).
- ³A. B. Harris, J. Phys. C **7**, 1671 (1974).
- ⁴A. Aharony, Phys. Rev. B **13**, 2092 (1976).
- ⁵M. Aizenman, J. Chayes, L. Chayes, and C. Newman, J. Phys. A **20**, L313 (1987).
- ⁶A. Coniglio, Phys. Rev. Lett. **46**, 250 (1981).
- ⁷D. Stauffer and A. Aharony, *Introduction to Percolation Theory*, 2nd ed. (Taylor & Francis, London, 1992).
- ⁸F. Iglói and C. Monthus, Phys. Rep. 412, 277 (2005).
- ⁹R. R. P. Singh and S. Chakravarty, Phys. Rev. B 36, 546 (1987).
- ¹⁰M. Hellmund and W. Janke, Phys. Rev. E **67**, 026118 (2003).
- ¹¹M. Hellmund and W. Janke, Condens. Matter Phys. 8, 59 (2005).
- ¹²J. L. Martin, in *Phase Transitions and Critical Phenomena* (Ref. 1), pp. 97–112.
- ¹³H. Meyer-Ortmanns and T. Reisz, Int. J. Mod. Phys. A **14**, 947 (1999).
- ¹⁴H. Arisue, T. Fujiwara, and K. Tabata, Nucl. Phys. B (Proc. Suppl.) **129**, 774 (2004).
- ¹⁵P. Butera and M. Comi, Ann. Comb. **3**, 277 (1999).
- ¹⁶B. D. McKay, Congr. Numer. **30**, 45 (1981).
- ¹⁷W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, *Numerical Recipes in C* (Cambridge University Press, Cambridge, England, 1992).
- ¹⁸D. E. Knuth, *The Art of Computer Programming*, 2nd ed. (Addison-Wesley, Reading, MA, 1998), Vol. 2.
- ¹⁹A. J. Guttmann, in *Phase Transitions and Critical Phenomena*, edited by C. Domb and J. L. Lebowitz (Academic Press, New York), Vol. 13, pp. 1–234.
- ²⁰L. Klein, J. Adler, A. Aharony, A. B. Harris, and Y. Meir, Phys. Rev. B **43**, 11249 (1991).
- ²¹M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev. E 65, 066127 (2002).
- ²²E. Luijten, K. Binder, and H. W. J. Blöte, Eur. Phys. J. B 9, 289 (1999).
- ²³H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, Nucl. Phys. B **512**, 681 (1998).
- ²⁴R. Kenna, Nucl. Phys. B **691**, 292 (2004).

- ²⁵R. Kenna and C. Lang, Phys. Lett. B 264, 396 (1991).
- ²⁶R. Kenna and C. Lang, Nucl. Phys. B **393**, 461 (1993).
- ²⁷D. J. W. Geldart and K. De'Bell, J. Stat. Phys. 73, 409 (1993).
- ²⁸J. Adler and V. Privman, J. Phys. A **14**, L463 (1981).
- ²⁹D. Stauffer and J. Adler, Int. J. Mod. Phys. C 8, 263 (1997).
- ³⁰D. S. Gaunt, M. F. Sykes, and S. McKenzie, J. Phys. A **12**, 871 (1979).
- ³¹E. Bittner, W. Janke, and H. Markum, Phys. Rev. D **66**, 024008 (2002).
- ³²R. Folk, Y. Holovatch, and T. Yavors'kii, Phys. Rev. B **61**, 15114 (2000).
- ³³R. Folk, Y. Holovatch, and T. Yavors'kii, Phys. Usp. 46, 169 (2003).
- ³⁴A. Pelissetto and E. Vicari, Phys. Rep. **368**, 549 (2002).
- ³⁵H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, Phys. Rev. B 58, 2740 (1998).
- ³⁶B. Berche, P. E. Berche, C. Chatelain, and W. Janke, Condens. Matter Phys. 8, 47 (2005).
- ³⁷ P. E. Berche, C. Chatelain, B. Berche, and W. Janke, Eur. Phys. J.
 B 38, 463 (2004).
- ³⁸D. Ivaneyko, J. Ilnytskyi, B. Berche, and Y. Holovatch, Condens. Matter Phys. 8, 149 (2005).
- ³⁹D. C. Rapaport, J. Phys. C 5, 1830 (1972).
- ⁴⁰D. C. Rapaport, J. Phys. C 5, 2813 (1972).
- ⁴¹R. B. Stinchcombe, in *Phase Transitions and Critical Phenom*ena, edited by C. Domb and J. L. Lebowitz (Academic Press, New York, 1983), Vol. 7, pp. 151–280.
- ⁴² W. Janke, B. Berche, C. Chatelain, P.-E. Berche, and M. Hellmund, in Proceedings of "Lattice 2005 Dublin," PoS(LAT2005)018.
- ⁴³ P. Calabrese, V. Martín-Mayor, A. Pelissetto, and E. Vicari, Phys. Rev. E 68, 036136 (2003).
- ⁴⁴A. Pelissetto and E. Vicari, Phys. Rev. B **62**, 6393 (2000).
- ⁴⁵D. P. Belanger, A. R. King, and V. Jaccarino, Phys. Rev. B 34, 452 (1986).
- ⁴⁶R. J. Birgeneau, R. A. Cowley, G. Shirane, H. Yoshizawa, D. P. Belanger, A. R. King, and V. Jaccarino, Phys. Rev. B 27, 6747 (1983).
- ⁴⁷P. W. Mitchell, R. A. Cowley, H. Yoshizawa, P. Boni, Y. J. Uemura, and R. J. Birgeneau, Phys. Rev. B 34, 4719 (1986).