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Abstract 

It has been suggested that the modified Steiner action functional has desirable properties for a random surface action. In 
this paper we investigate the scaling of the string tension and massgap in a variant of this action on dynamically triangulated 
random surfaces and compare the results with the gaussian plus extrinsic curvature actions that have been used previously. 

1. Introduct ion  

The issue of whether a non-trivial continuum limit 
exists for gaussian plus extrinsic curvature (GPEC) 
lattice actions of the form 

S = ~ _ ~ ( X i - X j ) 2 + A Z ( 1 - n i . n j )  (1) 
(i j) a,.a, 

on dynamically triangulated random surfaces, is of in- 
terest for the construction of well-defined lattice ver- 
sions of string theory [ 1-5] as well as for constructing 
models of membranes in biophysics and chemistry. 
The second term in Eq. ( 1 ), where the ni are the unit 
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normals on neighbouring triangles, is a discretization 
of the extrinsic curvature and acts as a "stiffness" term. 
If this term is absent one has a gaussian discretization 
of the basic Polyakov action [6] which gives rise to 
pathologically crumpled surfaces due to the failure of 
the string tension to scale [7]. The dynamical nature 
of the triangulation is manifested as a sum over tri- 
angulations, Y'~,T, in the canonical (fixed number of 
points) partition function 

N 

z N < a )  : 

i=1 i 

(2) 

where the delta function is inserted to kill the trans- 
lational zero-mode, and N is the number of points. 
This means that we have in effect a fluid surface. The 
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GPEC model of  Eqs. (1,2) apparently has a low ,~ 
crumpled phase and a large A smooth phase similar to 
those displayed by identical models on fixed triangu- 
lation surfaces [ 8 ] where the sum over triangulations 
in Eq. (2)  is dropped. The initial work in [ 1 ] found 
a pseudo-second order transition on small lattices, but 
later work [ 2,4,5 ] with larger lattices and better statis- 
tics suggested rather that the transition was higher or- 
der, or a crossover phenomenon [5,9]. 

The strongest evidence so far that there is, indeed, 
a transition comes from the measurements of  the scal- 
ing of  the string tension and mass gap carried out 
in [2].  An earlier measurement of  the string tension 
also found results that were consistent with scaling, 
but in this the points on the boundary, which consti- 
tuted a large proportion of  the total number of  points, 
were physically pinned down [3] and the vanishing 
of the lattice string tension at the critical point was 
assumed. Although analytical calculations suggested 
[ 10] that the extrinsic curvature coupling A in Eq. ( 1 ) 
was asymptotically free and hence that there was no 
non-trivial theory for finite A in the lattice action, the 
measurements in [2] were strongly indicative of  scal- 
ing and hence a finite string tension in physical units. 
This implies a non-trivial continuum limit at finite A. 

Pending clarification of  the behaviour of  the GPEC 
action on dynamical triangulations, we thought it a 
worthwhile exercise to investigate possible alterna- 
tive lattice random surface actions in order to see if 
their behaviour was more (or less!) clear-cut. We 
have already conducted some preliminary simulations 
[11,12] of  actions containing terms of  the form sug- 
gested by Savvidy et al. [ 13,14] that incorporate the 
modified Steiner functional [ 15]. The basic "Steiner" 
action is just 

1 
Ssteiner = 2 Z IX i  --  X j l O ( ° Q J ) '  (3)  

(i j)  

where O(aij)  = ]~r-crij] and aij is the angle between 
the embedded neighbouring triangles with common 
link (i j ) .  This is essentially a coarse discretization of 
the absolute value of  the trace of  the second fundamen- 
tal form of  the surface, rather than its square which 
appears in the GPEC action. It was observed in [ 16] 
that an action containing only this term ran into prob- 
lems with the entropy of  vertices in smooth configura- 
tions and failed to give a well-defined grand canonical 

(varying number of  vertices) partition function. It is a 
relatively simple matter however to concoct variations 
on this theme that constrain the errant planar vertices 
somewhat such as 

1 A 
51 = ~ ~ [Si - Xjl + -~ ~ ]gi - Sj]O(~ij)  (4) 

(i j )  (ijl 

or even 

h (i j )  

(5) 

where the [A I is just the area of  triangle a as seen 
in the space in which the surface is embedded. In 
[ 14] another alternative was suggested in which 0 was 
modified to O(ceij) = tTr- aij[ ~ with ~: < 1 which also 
appeared to improve the convergence of the grand- 
canonical partition function. 

In [ 11 ] we carried out simulations of  SI, $2 along 
with a further permutation combining a gaussian term 
with the Steiner part 

$3 = : ~ ~ - '~ (X i -  Xj )2  + ~  ~ - ~ l X i -  X j lO(aq)  (6) 
(i j)  (i j )  

and found rather similar behaviour to that seen for the 
GPEC action on small (72 and 144 nodes) meshes - 
namely peaks in the specific heats for the respective 
actions. For $1 we have 

~2 2 
C -- - ~  ((S~teiner) - (Ssteiner)2) . (7) 

We also see, by visual inspection of the surfaces, a 
low A crumpled phase and a large A smooth phase. 
Although the gyration radius, a measure of  the size of  
the embedded surfaces, 

1 
X2 = 9 N ( N  - 1) Z . .  (Xi  - Xj )2  qiqj (8) 

tj 

where the qi are the number of  neighbours of  point 
i, was not monotone increasing with ,~ as for the 
GPEC action this could be explained by noting that 
the Steiner term, unlike the extrinsic curvature, was 
dimensionful. 
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2. Expected  scal ing properties  

Our simulations described above were carried out 
on boundaryless surfaces with spherical topology. The 
simulations of  [2] ,  which were the most convinc- 
ing demonstration to date of  a non-trivial continuum 
limit, required surfaces with boundaries in order to 
carry out the scaling measurements of  the string ten- 
sion and mass-gap. These are constructed in an inge- 
nious manner using twisted boundary conditions on a 
torus, which we now outlin,e, in order to avoid pinning 
down a disproportionately large amount of  lattice at 
the boundary loops or points. It was observed in [2] 
that on a torus the sum of vectors X/j along the edges 
of  the triangulation on a closed path could take the 
values 

E(nl ,n2)  = nlEl + n2E2 (9) 

where the vectors E l ,  E2 a re  constant and the integers 
nl, n2 denote how many times the path winds round 
the two respective periods of  the torus. For non-zero 
E i this means that 

Xi(k l , k2 )  = Xi + klEl  + k2E2 (10) 

where the ki labelled the particular "copy" of  the sur- 
face at a given point. The partition function in Eq. (2)  
is now dependent on the choice of  Ei, ZN(A) 
ZN (A, El ,  E 2 ) .  Non-zero values of  El ,  E2 correspond 
to simulating the surface on a frame E1 × E2 .  The im- 
portant point to note is that it is not necessary to des- 
ignate any of  the points as boundary points in this pro- 
cedure. It is thus possible to avoid potential poblems 
with too many points on the boundary for small sur- 
faces. 

A canonical string tension 0-(A,N,  y2) for 
the system described above is defined by tak- 
ing El = (y, 0 ,0 ) ,  E2 = (0, y, 0),  FN(A,y 2) = 
- log ZN (A, y2) and 

0 - ( a , N , y  2) = OFN(A,Y 2) 
OY z ( 1 1 ) 

where the translational invariance of  ZN means it de- 
pends on only the projected area y2. Similarly a canon- 
ical massgap is defined by choosing El = (y, 0 ,0) ,  
E2 = ( 0 , 0 , 0 )  and 

aFN(A,y)  
m ( A , N , y )  = (12) 

Oy 

47 

It is expected that the N and y2 dependence in the 
string tension appears as the ratio r = y2 /N  and in the 
massgap as the ratio t = y/N.  

It is actually more natural to define the physical 
string tension in a grand canonical ensemble (with a 
varying number of  points) [ 17], which can be done 
by taking the Legendre transform of FN (A, y2) 

G(IX, A, y2) = Nt z + FN( A, y2) (13) 

where /x is the cosmological constant, For large y2 
one expects G(IX, A, y2) ~ O-(A, Ix)y2 with 

OFu 
0"(A, IX) = - -  = 0-(A,r) .  (14) Oy2 

The grand canonical 0"(A,/x) is expected to scale as 

a-(a, Ix) _~ o-0(a) + d ( a ) ~  2~ (15) 

where the exponent p governs the scaling of  the phys- 
ical a r e a  Aphys ~ Ix2~,y2, with /ZR = (/Z - /Zcrit ) . It 
is then possible to deduce the expected scaling of  the 
canonical 0-( A, r) : 

0-(A, r) "~ 0-0(A) + o-1 ( , ~ ) r  2 v / ( l - 2 v )  (16) 

The physical string tension 0-phys = O'(A, IX)//z 2p will 
be infinite unless 0-o (A) ~ ( A -  Acrit) ~ as we approach 
a critical point at s o m e  Acrit and this 0-0 is accessible 
in a canonical simulation. 

It is also possible to play a similar game with the 
massgap, defining 

G(/z, A, y) = Nix + FN( A, y) (17) 

which is expected to behave as G(ix, A,y)  
rh ( A, ix)y for large y. In this case we have r~ (A, ix) -~ 
ix,~ and 

m( A,t)  ~_ D( ,D t  ~/(l-~) (18) 

which is again accessible to a canonical simulation. 

3. Numerica l  s imulat ions  and results 

In this paper we apply the methods of  [ 2 ] to analyse 
the scaling of  the massgap and string tension for one 
of  the variant Steiner actions, S1. This was chosen 

l because the two terms in the action ~ ~( i j ) IX~  - 
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X~[ and Y'~(ij)IXF -X~lO(o~ij) have the same scaling 
d{mensions which simplifies somewhat the choice of 
observables. If  we rescale the coordinates Xi --~ yX~ 
in SI we find Sl (Xi ,y )  ~ ySt(X~, 1), which means 
that with the appropriate boundary conditions for the 
string tension measurements 

o-(a,r) = cgFN(A,r) = (S1) - 3 ( N -  1) (19) 
Oy 2 2y 2 

for a surface with N points embedded in 3 dimensions. 
If  we use the boundary conditions that are appropriate 
for the massgap measurements we find 

OFN(A,t) (SI) - 3 ( N -  l)  
m(X, r) - = (20) 

0y y 

We thus simply measure the expectation value of  the 
action with the appropriate choice of  frame in order to 
access information about the string tension and mass- 
gap scaling. 

In addition, we measure the specific heat as defined 
in Eq. (7) and histogram the output data at the var- 
ious .,t simulated in order to use the multi-histogram 
method of  Ferrenberg and Swendsen [ 18], which al- 
lows one to estimate the density of  states and hence 
the specific heat for arbitrary A. We also measure the 
gyration radius, as defined in Eq. (8),  but a certain 
amount of  care is needed with this because of  the 
twisted boundary conditions. We choose to measure 
the X2 using only the component transverse to the 
frame in the string tension measurements to avoid con- 
fusion, and the two components transverse to the line 
separating the pinned points in the case of  the mass- 
gap measurements. The autocorrelation times for the 
various observables are calculated in order to ensure 
that we have reasonable statistics. We also measure 
the various acceptances for the lattice and X moves to 
check that the Monte-Carlo algorithm, which we now 
describe, is behaving reasonably. 

In order to achieve a reasonable amount of  vector- 
ization in the code 64 systems were simulated in par- 
allel, with measurements being taken after a sufficient 
number of  sweeps were made to allow them to decor- 
relate. It proved to be convenient to store the link vari- 
ables Xij rather than the site variables Xi which allows 
the incorporation of  the twisted boundary conditions 
a s  Xi j  = X i -  Xj- .~-Eij  , where Ei j  = n] jE i  +n~E2. The 
integers nij are non-zero when the link (i j) passes from 

one of  the elementary cells in the parameter space (a 
plane for the torus) to another. Rounding errors dur- 
ing the simulation can be kept under control by using 
the transformations 

X i --> X i -~ I~E1 + l~E2 

Eij ~ Eq + l~ E1 + 12E2 - lJ Et - l~E2 (21) 

where the l 's are arbitrary integers to keep the Eli'S 
from straying. 

The sum over lattices is effected by carrying out lo- 
cal flip moves on adjacent triangles, forbidding flips 
that lead to degenerate triangulations with less than 3 
neighbours per point or with 2-loops. With non-trivial 
boundary conditions the Eij for affected edges must 
be changed, whereas the Xi are left untouched. The 
coordinates Xi are updated with a simple Metropolis 
scheme, which does not affect the non-trivial bound- 
ary conditions. In this paper we report on simulations 
carried out on relatively small surfaces of  size 64 and 
144 nodes. We have not proceeded to larger surfaces 
in the current batch of  simulations because there is a 
hidden penalty built into the direct transcription of  the 
Steiner action we have used in Sl, compared with the 
GPEC action. Namely, the calculation of  0 (a i j )  re- 
quires an inverse trigonometric operation, rather than 
the simple multiplications involved in calculating n .  n 
in the GPEC action. It might be possible to avoid this in 
further simulations by using some trigonometric func- 
tion with the requisite properties for 0 (0(2¢r - a )  = 
0( ~), O( ~r) = O, O( a) >_ 0 ), but this begs the ques- 
tion of  universality. 

If  we now move on to discuss the measurements 
made for the string tension and massgap with the 
choice of  frames El = (y, 0, 0), E2 = (0, y, 0) and 
El = (y, 0, 0), E2 = (0, 0, 0) respectively, compari- 
son of  Fig. 1 for the string tension and Fig. 2 for the 
massgap with Figs. 6, 7 in the first of  [2] reveal strik- 
ing similarities. Looking at Fig. 1 for the string tension 
first we see that the data points, as expected, fall on 
universal curves as a function of  r for a given A until 
finite size effects set in at small r. Lines are drawn to 
guide the eye through the points coming from the N = 
64 (8 x 8) surface. For large r, just as for the GPEC 
action, we would expect a / I  independent limit which 
is what is observed. For small r the A dependence be- 
comes more marked, with the o- values straddling zero 
as r --+ 0 on the 8 x 8 lattice for A = 3, 4. On the 12 x 12 
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Fig. 1. The canonical string tension o-(A,r) is plotted for the 
various A values to show the scaling with r = y2/N. 
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Fig. 2. The canonical massgap re(A, t) is plotted for the various 
A to show the scaling with t = y/N. 

lattice both the results for h = 3 ,4  lie below the axis 
which favours a smaller critical coupling. The results 
suggest that there is some Ac where o-(A, r)  ~ 0 as 
A ~ Ac and r ~ 0. This is one of  the prerequisites 
for a finite physical  string tension. For A = 4 we see 
negative o-(,~, r )  at small r, which is due to the re- 
pulsion of  the vertices, and the value where it is zero 

corresponds to the equil ibrium configuration. This is 
again similar to the behaviour observed in the GPEC 
action, as are the very long autocorrelation times ob- 
served in this phase. We would expect the results for 
m(A, t) in Fig. 2 to fall on universal curves for dif- 
ferent A with t = y / N  until finite size effects set in 
at small t, and this is, indeed, what is seen. We have 
again drawn lines through the N = 64 (8 x 8) points 
to guide the eye. No sensible fits to the exponent u are 
possible with our data, though Fig. 2 is qualitatively 
similar to that produced by the GPEC action. 

Measurements of  X2 for the framing used in the 
string tension measurements appear at first sight to 
contradict the hypothesis of  a smooth phase at large A 
as they show a decrease with A rather than the naively 
expected increase for sufficiently large frame sizes. 
However a moments thought suggests that this is, in 
fact, consistent with a smooth phase as we are only 
measuring the fluctuations transverse to the frame in 
X2. A typical smooth configuration at large ~ will 
thus be planar and the rigidity will suppress transverse 
fluctuations and give a small X2. 

To summarize the numerical results of  this paper: 
for the action Sl, containing an edge length and a 
Steiner term, the scaling behaviour of  both the string 
tension and the massgap appear similar to those seen 
in the GPEC action. We do not have enough data at 
small values of  r and t to extract estimates of  the ex- 
ponent u reliably and check whether they agree, which 
would be the acid test of  scaling. The behaviour of  
the specific heat peak is consistent with that seen in 
our earlier, smaller scale, simulations of  S1. Finally 
X2, both with and without framing the surfaces, gives 
every indication of  a smooth or rigid phase at larger 
A. There is no sign, however, of  sharper scaling be- 
haviour than is seen with GPEC actions, for Sj at any 
rate. For future work it is possible that a subdivision 
invariant action such as $2 might offer a faster ap- 
proach to the continuum limit [ 16]. A more judic ious  
choice of  a from the numerical point of  view for any 
of  the Steiner actions $1, $2, $3 might also offer the 
possibil i ty of  more efficient simulations. Nonetheless, 
the current batch of  simulations has demonstrated that 
there is some evidence for scaling and hence a non- 
trivial continuum theory for a particular Steiner action, 
just  as with the GPEC action. 
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