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Stacks of fluctuating self-avoiding surfaces with extrinsic curvature stiffness show a fundamental  pressure law analogous to the 
ideal gas l a w p V = N k B T f o r  point particles, namelyp=2ce(kBT)2/zd  s ( T =  temperature, d=dis tance,  Z= stiffness). We present a 
precise determination of  the constant c~ and find a ,~ 0.101 _+ 0.002 thereby improving considerably upon an earlier number.  

Much attention has recently been payed to surfaces 
with extrinsic curvature stiffness ~ to be denoted 
shortly as SS's (for "stiff surfaces"). They seem to 
represent the sheets of color electric flux tubes be- 
tween quarks in a much better way than surfaces 
equipped with tension only [2]. Their fluctuations 
have the desirable feature of being asymptotically free 
in the ultraviolet [ 1,2 ] so that they are able to gen- 
erate a tension spontaneously just as in QCD. SS's 
are known to be predominant also in many other sys- 
tems appearing, e.g., as domain walls in magnets, as 
oil water interfaces in microemulsions or as biologi- 
cal membranes. While the fluctuation properties of a 
single nearly flat SS have by now been studied up to 
the two-loop level in any dimension D [3] and ex- 
actly in the limit D-~oc [4], the behaviour of grand 
canonical ensembles of SS's is still understood quite 
poorly. The reason is the complexity of the func- 
tional integrals over arbitrary topologies and the many 
possibilities of local interactions between different 
surface elements. So, any limited information on 
multisurface systems is of potential use. 

Some time ago, a simple model has been devised 
by two of us (J.K.) [ 5 ] that allows studying an ex- 
treme limit of these local interactions in the form of 
self-avoiding SS's, to be called SSS's. This was done 
for the particularly simple geometric configuration of 
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~ They were investigated originally in membrane  physics [ 1 ]. 

a stack of closely spaced surfaces in a box. For linear- 
ized curvature energies, the Janke-Kleinert partition 
function reads 

,,= ~ 2T ~..~ ' 

( la)  

0<u l  <u2<...  <u~.< (N+ 1)d ,  ( lb )  

where u~ (x) are the vertical positions of the nth sur- 
face (n = 1,..., N) over a flat background area x which 
is approximated by an L × L square lattice of spacing 
a (V.V is the usual lattice laplacian and the Boltzmann 
constant is taken as ks = 1 ). 

The gaussian parametrization of the surfaces en- 
sures the intrinsic self-avoidance of each individual 
surface, and the inequalities (1 b) guarantee mutual 
avoidance between the surfaces, so that there is com- 
plete self-avoidance of the ensemble. For N =  1 we 
have the particularly simple model of a single SSS in 
a box. 

A simple rescaling argument presented in ref. [ 5 ] 
shows that Z depends on its parameters in the follow- 
ing way: 

Z~--Zfree 'Zint  -~ 7~NL2/2"Zint(r , r / L  2) , (2) 

where z is the dimensionless variable z-= T A / x d  2 with 
A = a 2L 2 = base area. 

One therefore only needs to study the model, for 
any given N at any fixed A, d as a function of the sin- 
gle variable T. The additional free energy per layer 
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generated by the self-avoiding constraint ( l b )  is 

A F / T =  - (In Z - I n  Zfr~¢)/N. 

In a large system, A - ~ ,  it possesses the obvious 
asymptotic expansion in z / L  2 

AF/T=o~z( l+½alz /LZ+~a2zZ/L4+ ...) (3) 

(with exponentially small terms, ~ exp ( - L 2 / z) 
missed). The expansion is valid only for large area A 
so that 1 << z<<L 2. I f  z is close to 1, there are also 
corrections of  the type exp ( - r)  [ 6 ]. For  the internal 
energy per layer, (3) implies 

A E / T = z O (  - A F  I T )  IOz 

= - a z (  1 +a~ z / L 2 + a 2 z 2 / L 4 +  ...) . (4)  

The pressure p =  - 0(NAF)/OV, with V= ( N +  1 )dA 
being the volume of  the total stack, is directly pro- 
portional to (4),  namely 

N +  1 Ad 

(the factor N / ( N +  1 ) accounting for the difference 
between the number  o f  layers and that o f  spacings). 

The choice o f  the variables r and L has the obvious 
advantage that for fixed r (i.e. fixed T / Z  which, in- 
cidentally, is in biological membranes at room tem- 

~ 1  perature ~ 5 ), also the geometry A / d  2 is fixed, so that 
the limit L - - , ~  is also equivalent to the cont inuum 
limit in the lattice spacing, a ~ 0  (with the area 
A = a Z L  2 fixed). 

The internal energy can easily be measured by 
Monte Carlo simulations. In an earlier [ 5 ] work, the 
authors took advantage of  the fact that they pos- 
sessed previous simulation data of  a related D = 2 de- 
fect melting model [7 ] which could trivially be ex- 
tended to a multilayer system. The data could be 
reinterpreted to extract a first estimate of  the number  
o~, namely a ~ 0.074, about three times smaller than 
Helfrich's [ 8 ] original quasi-harmonic estimate 
o~=3rt~/128~0.23.  As convenient as it was, how- 
ever, the use of  the melting model introduced a quan- 
titative source of  error since it was formulated with 
finite steps in u , ( x ) .  This error was assumed to be 
small, since the measurements were done far above 
the laplaeian roughening transition, where the dis- 
creteness becomes irrelevant. In the present paper we 
eliminate this source of  error and report a value of  o~ 

with an extremely high accuracy. This is achieved by 
means of  a detailed finite step-size, finite N, and fi- 
nite-size L analysis of  the system and separate runs 
with continuous u~(x)'s,  using the Metropolis algo- 
ri thm ~2. It turns out that removing the steps in un (x) 
increases a by the sizeable amount  of  ~ 30% to 

a = 0 . 1 0 1  +0.002 (N=cx~).  (5a) 

For N =  1, the previous discrete u estimate a ~ 0.060 
is raised by about the same fraction to 

a=0 .079_+0.002  ( N = I ) .  (5b) 

Let us start with the N =  1 case using, as before, dis- 
cretized displacements u (x )  =- u~ ( x )  = h (x) /hm,~ 
with integer-valued h (x) e [ - h . . . .  hmax ]. We inves- 
tigate the dependence on hmax of  the internal energy 
zkE for hma~ between 3 and 15. Fig. la shows 
( A E / T )  / r = - ( a  + a ~ z +. . .  ) plotted versus z/162, 
on a 16 X 16 square lattice. We have divided out the 
lattice size, 16 2, SO that z~ 162 is of  unit order of  mag- 
nitude. In these runs, at least 50000 configurations 
were used for measurements after discarding 10 000 
sweeps for thermalization. For  updating the discrete 
displacements we employed the standard heat-bath 
algorithm which is straightforward to implement in 
this case. Our error bars are estimated by dividing 
each run into blocks of  several sweeps, calculating the 
block-average, and taking the variance of  these par- 
tial energies. By varying the block-lengths, W e checked 
that the block-averages are sufficiently uncorrelated 
to allow for reliable error estimates. Since the inter- 
cept o f  smooth fits through the data in fig. 1 a corre- 
sponds directly to the pressure coefficient o~, it is easy 
to see that our new, much more accurate data for 
hmax -~ 5 are consistent with our former measurements. 

The new data show a strong dependence on the step- 
size even for larger hr,~x. This is why we decided to 
simulate the system once more with continuous 
u (x) ' s  using the standard Metropolis algorithm. The 
result is fitted well by the solid curve whose intercept 
gives - a  (and whose slope gives - a ~  ). The correc- 
tions due to the discreteness o f u ( x )  die out only like 
1/h . . . .  This is demonstrated in fig. lb where we plot 

~2 The algorithm consists of choosing trial values for new u, (x) 's  
randomly from an interval [un(x) - Au, u,(x) + Au] at each 
site. The parameter Au was adjusted to ensure an overall 
acceptance around 50%. 
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Fig. 1. (a) (AE/T) / r  versus r/162 for discrete displacements with 
h .... ranging from 3 to 15. Note that the intercept of the smooth 
interpolation gives directly the value of the pressure coefficient 
o~. Also shown is the limiting c a s e  h m a x - - ~  o o  (with continuous dis- 
placements). The solid line is a fit of these data in the range 
r/162=0.4-1.5 to the form - [a+o?~ r/LZ+~2(r/L 2) 2] with 
a=0.078, o7~ = -0.0137, ~72 =0.0020. The dashed line indicates 
the spatial continuum limit L--*~, for fixed T-= TA/Kd ~-. (b) De- 
pendence of (AE/T)/~ on the step-size of discrete displacements 
for r /16z= 1.1111 ( 1 ), 0.8333 (2), 0.6 (3). Straight line extrap- 
olations to 1/h~x = 0 are consistent with the results for continu- 
ous displacements, indicated by the arrows at the y-axis. 

( A E I T ) / r  ve r sus  1/hmax for  t h r e e  va lues  o f  v/162.  

O b v i o u s l y ,  s i m p l e  s t r a igh t  l ine  e x t r a p o l a t i o n s  to  I /  

hma× = 0 a re  c o n s i s t e n t  w i t h  t he  s i m u l a t i o n s  w i t h  con-  

t i n u o u s  d i s p l a c e m e n t s ,  i n d i c a t e d  by  a r r o w s  on  the  

o r d i n a t e .  

In  t he  l a t t e r  s i m u l a t i o n s  we a v e r a g e d ,  for  m o s t  

t e m p e r a t u r e s ,  t he  resu l t s  o f  two  r u n s  w i t h  d i f f e r e n t  

s ta r t  c o n f i g u r a t i o n s  ( typ ica l ly  a n  o r d e r e d ,  r a n d o m ,  

o r  g a u s s i a n  d i s t r i b u t i o n ) .  E a c h  r u n  c o n s i s t e d  o f  av-  

e rages  o v e r  at  leas t  5 0 0 0 0 0  c o n f i g u r a t i o n s ,  a f t e r  dis-  

c a r d i n g  1 0 0 0 0 0 - 2 5 0 0 0 0  sweeps  for  t h e r m a l i z a t i o n .  

We  f u r t h e r  p e r f o r m e d  a f in i t e - s i ze  sca l ing  s t u d y  

( w h i c h  is s i m u l t a n e o u s l y  a c o n t i n u u m  l i m i t  s t u d y )  

o f  A E / T o n  s q u a r e  la t t ices  o f  l i n e a r  size L =  12, 16, 

24, 32, 48 (see  fig. 2a,  n o t i c e  t h a t  we h a v e  kep t  the  

s a m e  x-ax i s  as in  fig. l a  for  a n  eas ie r  c o m p a r i s o n ) .  

F o r  each  la t t ice-s ize separate ly ,  we h a v e  f i t ted  the  da ta  

in  fig. 2a  to  a p o l y n o m i a l  p ( ~ ) = - ( a _ ~ + a r +  
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Fig. 2. (a) AE/T versus r/16 2 o n  square lattices obtained in the 
simulations with continuous displacements. For fixed r_  = 
TA/xd 2, increasing the number of lattice sites, L 2, corresponds 
to approaching the continuum limit. This is shown as a straight 
line with slope -o~= -0.078, determined from fits to the data as 
explained in the text. With T/x= ½, one finds in the range 
z/162 ~ 0.3-1.0 the ratio , ~ / d ~  20-36, i.e. the linear size of the 
basis plane is indeed much larger than the layer spacing. In this 
range, L=48 is almost sufficient to reach the continuum limit• 
For r<  1 (i.e. very small r/162<0.004), deviations from the 
simple linear law are expected due to physical finite-size effects 
(A < (x /T)  d 2 at fixed it~T). (b) Scaling of the data in (a) with 
I /L 2 for fixed r. Since we have scaled the ordinate by r, it gives 
directly the slope of the straight line in (a). This plot confirms 
that extrapolations of the data in (a) along the vertical direction 
to L=oo, reproduce the linear continuum law AE/T= -o~r with 
a=0.078.  
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O / 1  ~ ' 2 " 1  - . . . )  where cq ~ 1/L  2, o~2 ~ 1 / L  4, ..., parame-  

trize the devia t ions  from cont inuum behaviour .  Per- 
forming ANOVA (analysis  o f  var iance)  tests [ 9 ], we 
de te rmined  the op t imal  degree of  our  po lynomia l  an- 
satz and verif ied that  c~_ ~ = 0 is stat ist ically signifi- 
cant. Since we do not  observe any definite t rend of  a 
as function of  L, we are able to give as final result for 
a ,  from an average over the five lattices studied,  the 
very accurate value 

a = 0 . 0 7 8  +_0.001 ( N =  1, square l a t t i c e ) .  (6a )  

The graphical  1 /L  2 extrapola t ions  for fixed z, shown 
in fig. 2b, confi rm this value. We then checked the 
dependence  of  our result on the use o f  a square latt ice 
by doing the same analysis once more on a t r iangular  
latt ice with sizes L =  12, 24, 48. Here we f ind the 
value, consistent  with (6a) ,  

a=0 .080+_0.001  ( N = l , t r i a n g u l a r l a t t i c e ) .  (6b)  

Combining  (6a)  and (6b)  we arrive at the result 
quoted in (5b) .  

Let us now turn to our s imulat ions  of  stacks of  sur- 
faces (with cont inuous  u ' s ) .  Gu ided  by the experi-  
ence with the N =  1 case we confined ourselves to a 
24 × 24 square lattice. Da ta  were taken in a thermal  
"hal f"-cycle  start ing at large r with 500000 sweeps 
for measurements  and 100000 sweeps for equil ibra-  
t ion at each temperature .  Wi th  stabil izing walls at 
z =  0 and z =  ( N +  1 ) d, the number  o f  layers was var- 
ied between N =  3, 5, 7. Measurements  of  the average 
spacings of  the layers conf i rmed the intui t ive expec- 
ta t ion that  a neighboring SSS is slightly more repul- 
sive than a neighboring wall. For  small  N, the l aye r -  
layer distance is about  25% larger than the wal l - layer  
distance. We have therefore replaced the naive dis- 
tance d by the true, measured  l ayer - l ayer  dis tance d N 
in all formulae.  Fur thermore ,  for all N we have used 
in our final analyses only the da ta  for the central  SSS. 
Since it is always in contact  with two other  fluctuat- 
ing SSS's the addi t ion  o f  fur ther  outer  SSS's has neg- 
ligible influence apar t  f rom decreasing further the 
mean layer - layer  distance. This  picture is complete ly  
consistent  with our  da ta  for the innermost  SSS, plot- 
ted in fig. 3, which cluster a round  a c o m m o n  curve, 
after the abscissa is corrected for the increased l ayer -  
layer distance, i.e. r - T A / y d 2 - , r  ..... =-TA/zd~, as 
just  explained.  Fi t t ing the da ta  for each N separately 
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Fig. 3. AE/T for the central surface in stacks with N= 3, 5 and 7 
layers. Here, r ...... =-TA/Kd~ with d,(~d+25%) the measured 
distance of the central surface to its neighbors. As in fig. 2a, the 
straight line with slope - 0.101 shows the continuum limit deter- 
mined from various fits (see the text). 

with the polynomia l  ansatz p ( r ) ,  we f ind *~3 
c~=0.1002(6) ,  0 .1022(6) ,  0 .1009(7)  for N =  3, 5, 7, 
showing indeed no systematic N dependence.  As a fi- 
nal result, we then give the average of  these values 
and f ind the number  quoted in eq. (5a) .  

Let us also ment ion  that  we have per formed some 
compara t ive  runs with per iodic  boundary  condi t ions  
in the vert ical  direct ion (N SSS's d is t r ibuted  over a 
circle).  In this case the average layer - layer  distance 
is fixed to the init ial  d, so that  all SSS's are on the 

same footing. This increases the available statistics 
by a factor of  N. Unfor tunately ,  however,  the esti- 
mates  for a using up to N =  10 layers turn out to de- 
pend l inearly on 1 /N  (as can easily be unders tood  
theoret ical ly) ,  so that  it is much more economic to 
work with the fixed-wall case combined  with the 
above distance corrections. 

We close by remarking that  although a is a funda- 
mental  constant  o f  SSS physics, it will not  be easy to 
measure  it in real membrane  systems. The non-line- 
ari t ies in the curvature energy with their  asymptot ic  
f reedom cause a very fast crossover o f  the 1 /d  3 pres- 
sure law to an exponent ial  falloff over a length scale 
of  a few membrane  thicknesses [ 10]. Thus there 
really is too little distance to see a clean l i d  3 

dependence.  

.3 The numbers in parentheses are the errors in the last digit. 
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