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We use the single-cluster Monte Carlo update algorithm to simulate the three-dimensional classical Heisenberg model in the 
critical region on simple cubic lattices of size L 3 with L= 12, 16, 20, 24, 32, 40, and 48. By means of finite-size scaling analyses 
we compute high-precision estimates of the critical temperature and the critical exponents, using extensively histogram reweight- 
ing and optimization techniques. Measurements of the autocorrelation time show the expected reduction of critical slowing down 
at the phase transition. This allows simulations on significantly larger lattices than in previous studies and consequently a better 
control over systematic errors in finite-size scaling analyses. 

The crit ical behaviour  of  the three-dimensional  
(3D)  classical Heisenberg model,  as one of  the sim- 
plest spin models,  has been invest igated by a variety 
of  approaches.  Despi te  this fact there are still some 
discrepancies  to be resolved. Mot iva ted  by conflict- 
ing est imates  of  its critical coupling tic on a s imple 
cubic latt ice coming from widely accepted high-tem- 
perature series expansion analyses [1] (tic= 
0.6916 (2)  ) and more  recent t ransfer-matr ix  ( T M )  
Monte  Carlo ( M C )  invest igat ions [2] (tic= 
0.6922 (2)  and tic = 0.6925 (3 )  ), Peczak, Ferrenberg 
and Landau [3 ] ( P F L )  have recently under taken a 
high statistics MC study of  this model  on cubic lat- 
tices of  sizes up to V = L 3 = 2 4 3 .  By s imulat ing the 
system with the s tandard  Metropol is  a lgori thm [4 ] 
and making extensive use of  mul t i -h is togram tech- 
niques [5] ,  they could not  decide between the two 
alternatives.  Rather,  f rom a finite-size scaling (FSS)  
[6] analysis of  the crossing points  o f  Binder 's  pa- 
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rameter  [ 7 ] they claimed an even larger value of  tic = 
0 .6929(1) .  Moreover,  extrapolat ions  of  the loca- 
tions of  the susceptibil i ty and specific-heat peak 
ma x imum to the infinite volume l imit  yielded [3 ], 
respectively, tic = 0.6930 (2)  and tic = 0.6931 (10) ,  in 
agreement  with the Binder paramete r  crossing value. 

However,  PFL did not ment ion  a later reanalysis 
[8] of  the high-temperature  series expansion based 
on the Pad6 ( f l c=0 .6924(2 ) )  and ratio (tic= 
0.6925 ( 1 ) ) method,  respectively. While  these val- 
ues are consistent with the TM estimates given in ref. 
[ 2 ], we are now faced with the problem that  the lat- 
est MC result is significantly higher. 

The critical coupling is a non-universal  parameter  
and from this point  of  view of  no par t icular  interest. 
Most  est imates of  universal  critical exponents,  how- 
ever, are biased and usually depend  quite strongly on 
the precise value of  tic. To clarify the above discrep- 
ancy we found it therefore worthwhile to perform an 
independent  high precision MC study on larger lat- 
tices of  sizes up to 483 and with even higher statistics 
than in PFL's  work. Relying on the Metropol is  al- 
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gorithm as PFL did, such a project would have been 
hardly feasible. As with most local algorithms, the 
Metropolis (pseudo) dynamics suffers from the se- 
vere problem of critical slowing down, that is from 
large autocorrelation times r=aL z (with dynamical 
critical exponent z =  1.94(6) [9] and ~1 a~3 .76) ,  
which reduce the size of the statistical sample, N, ef- 
fectively to Nefr.~ N/2r. It is therefore crucial to use 
one of the improved algorithms (for reviews see, e.g., 
ref. [ 10] ) of  the past few years that avoid this prob- 
lem. We chose the cluster algorithm [ 11 ] in its sin- 
gle-cluster variant [ 12 ]. From studies of related spin 
models it is known [ 13 ] that this update algorithm 
is extremely efficient in three dimensions. 

The classical Heisenberg model is defined by the 
partition function 

Z= IJi \ J:f dfbid-c°sOi)e-PE4~ ' (1) 

ewhere fl--- 1 / T is the (reduced) inverse temperature 
and 

E= ~ (1-si'sj) (2) 
< i,j > 

is the total energy (in the following lowercase letters 
always denote the corresponding intensive quan- 
tities, e.g., e=E/V). The sum runs over all nearest 
neighbour pairs < i, j>,  and the three-dimensional 
unit spins s at the sites i of a simple cubic lattice are 
parametrized as 

s =  (cos ~ sin 0, sin ~ sin 0, cos 0) . 

We always employ periodic boundary conditions. 
Our simulations were organized as follows. First, 

we did one run for each lattice size at flo = 0.6929, the 
estimate of  tic by PFL, and recorded the energy his- 
togram Ppo(E) and the microcanonical averages 

Pao( E, M)m k 
(<mk>>(E) - ~ ppo(E) , k = 1 , 2 , 4 ,  

where m = I ml is the magnitude of the magnetization 

1 M 
m= ~ ~ s(x) = T 

of a single spin configuration. The temperature in- 
dependent averages << .mk>> (E) can be computed by 

#t This can be read offfrom fig. 2 in ref. [9 ]. 

accumulating the values of  m k in lists indexed by the 
associated energy bin of  the configuration and nor- 
malizing at the end by the total number of entries in 
each bin, making it thus unnecessary to store the two- 
dimensional histogram Ppo(E, M). The continuous 
energy range 0 ~ E~< 3 V was discretized into 90000 
bins. The data of this run are sufficient to compute 
the approximate positions fl_ < flo and fl+ > fl0 of  the 
(connected) susceptibility and the specific-heat peak 
maximum by reweighting techniques [ 5 ]. We then 
performed two more runs at fl_ and fl+, respectively, 
again recording P#(E) and (( rag>> (g). This choice 
has the advantage that one automatically stays in 
the critical region since both fl_ and fl+ scale with 
L -~/~, where u is the correlation length exponent. 
From these data we can compute three estimates 
O~n)(fl), n = - ,  O, +, for all thermodynamic ob- 
servables Oz of interest, and for any fl value in the 
vicinity of fl_, flo, fl+ by reweighting. Furthermore, 
since we divided the whole run into several blocks 
and stored the energy histograms and microcanon- 
ical averages for each block, we could compute jack- 
knife errors [ 14] AO~. n) on O J: ) . This allowed us to 
obtain an optimized average of these three values that 
minimizes the relative error of the combined Oz(fl) 
for each observable separately (the relative weights 
are simply l / (AO~. n) ) 2 ). All our runs contain at least 
10000×z measurements, where z is the integrated 
autocorrelation time of the susceptibility. As ex- 
pected for the single-cluster update, z turns out to be 
almost independent of  the lattice size and very small 
( < 2, in units of lattice sweeps that allow direct com- 
parison with the Metropolis algorithm). For the 483 
lattice z is about three orders of magnitude smaller 
than for the Metropolis algorithm. This explains why 
we could study much larger lattice sizes than PFL, 
and could still afford to have about ten times better 
statistics. 

To determine tic we first concentrated on Binder's 
parameter [ 7 ] 

<m4> 
UL(fl) = 1 3<m2>2, (3) 

where < > denotes thermal average with respect to 
( l ) .  It is well known [7 ] that, asymptotically for 
large L, all curves UL(fl) should cross in the unique 
point (tic, U*). Our results for lattices of size L = 12, 
16, 20, 24, 32, 40, and 48, obtained by the optimi- 
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zat ion procedure  descr ibed above, are shown in fig. 
1. We see that  all curves indeed cross each other  at 
approximate ly  the same fl value of  0.693. A closer 
look, however,  reveals that  the crossing points  of  UL 
and Uu are systematical ly shifted, depending on the 
ratio b -  L ' /L .  This is the expected behaviour  for fi- 
nite lattices, caused by confluent correct ion terms. 
Employing well-known [7] ext rapola t ion formulas  
we obtain the final est imates (for more details,  see 
ref. [15 ] ) .  

tic =0.6930-+0.0001 , (4)  

and 

C* =0.6217-+ 0.0008 . (5 )  

The critical coupling is thus found in excellent agree- 
ment  with the value quoted by PFL, and also C* 
agrees very well with their  es t imate  o f  0.622 ( 1 ). For  
comparison,  a field theoret ical  ~-expansion in 

predicts  for D = 3  a 4% lower value of  
0.59684... [16].  

Let us now turn to the FSS est imates of  critical ex- 
ponents.  The derivat ives  dUL/dfl at f lc=0.6930 
should scale asymptot ica l ly  for large L with L i/,. In 
a log-log plot  of  all our  data  points  we f ind a perfect 
straight line fit (with goodness-of-fit  pa ramete r  
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Fig. 1. Binder parameter /_k versus ft. The values of Uz,(fl) were 
obtained by reweighting and optimized combining the results of 
our three simulations at different temperatures for each lattice 
size L. The simulations were performed at flo = 0.6929 (the criti- 
cal coupling found by Peczak et al. [ 3 ] ), and at the temperature 
locations of the maxima of the specific heat C and the suscepti- 
bility Z ¢, respectively. 

Q=0 .61  ) and from the inverse slope we read off  

v=0.704_+ 0 .006,  (6)  

which again is in agreement  with the value quoted by 
PFL, v = 0 . 7 0 6 ( 9 )  (determined by the same method, 
but  at f l=  0.6929),  and with the field theoretical  es- 
t imates  of  v = 0.705 ( 3 ) ( r e summed  per turbat ion  ex- 
pansion [17 ] ) ,  u = 0 . 7 1 0 ( 7 )  ( resummed ~-expan- 
sion [ 18] ). The high quali ty of  this fit (as well as of  
all other  fits described below) shows that  the asymp- 
totic scaling formula  works down to our smallest lat- 
tice size L = 12, indicat ing that there is no need for 
confluent correct ion terms. 

The ratio of  exponents  fl/v follows from the scal- 
ing of  the magnetizat ion,  ( m )  ~cL-e/" .  In a log-log 
plot o f  ( m )  at f lc=0.6930 versus L we obtain from 
a straight line fit (with Q = 0 . 6 8 )  the est imate 

f l /v=0.514 -+ O.O01, (7)  

which is slightly lower than the value given by PFL, 
f l / v = 0 . 5 1 6 ( 3 )  (de te rmined  at f l=0 .6929) .  To test 
by how much our result is biased by the value of  tic 
we have redone our analysis at f l= 0.6929. Here we 
obtain the slightly higher value o f  0 .519(1) .  The 
quality of  the fit, however, is much worse (Q = 0.30). 
Since we observe a s imilar  worsening of  the fit at 
f l=0.6931 ( f l /v=0.509(1),  Q =0 .31 ) ,  we take this 
as support  for our est imate of  tic. We rely on the 
goodness-of-fit  parameter  since visually it is impos-  
sible to make a dis t inct ion between these fits when 
plot ted on a natural  scale. It should be emphasized 
that  even these slight variat ions in the est imate of  
the critical coupling produce significant changes in 
the est imate of  the exponent  ratio that  clearly dom- 
inate the statistical errors. Combining  (6)  and (7)  
we obta in  for the crit ical exponent  f l = 0 . 3 6 2 ( 4 ) ,  to 
be compared  with the est imates of  f l=0 .3645 (25 )  
[17] a n d f l = 0 . 3 6 8 ( 4 )  [18].  

All other  critical exponents  follow from (hyper-)  
scaling relations. In this way we obtain 

o~/v= 2 / u -  D= -0.159_+ 0.024 , (8)  

y / u = 3 - 2 f l / v =  1.972_+0.002, (9)  

and 

q = 2 - 7 / v = 2 f l / v -  1 =0.028_+0.002.  (10)  

To test these relations we have performed also a di- 
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rect analysis of the critical behaviour of the specific 
heat, 

C =  Vp2( ( e 2)  - ( e )  2) ocL '~/~ , ( 11 ) 

and of the (connected) susceptibility, 

Zc= Vfl( ( m  2 ) -- ( m ) 2 ) o c L  y/v . (12) 

Since the magnetization vanishes at and above the 
critical temperature we may also take 

X= Vfl( m 2) oc L y/~ , (13) 

which is usually a less noisy estimator. 
From the location of the maxima of C and X c we 

can get further estimates for the critical coupling by 
assuming the FSS relation T m ~ = T ~ + a L - ~ / ~ +  .... 

Using our value of v=0.704 we obtain from the lin- 
ear fits shown in fig 2 the estimates fl~=0.6925(9) 
(from T c ~  with Q=0.80) andfl~=0.6930(3) (from 
Tx~ ~ with Q= 1.0), respectively. These values are 
consistent with the crossing value (4), but have larger 
statistical errors. 

From the scaling of g c and X at our best estimate 
of fl¢=0.6930 we obtain from linear fits 
~/=0.0156(44) (Q=0.69)  and ~/=0.0271(17) 
(Q=0.78) ,  respectively. The latter value is in per- 
fect agreement with the scaling prediction (10). 
Moreover, performing fits to X at fl=0.6929 and 
//=0.6931 we obtain estimates of ~/=0.0364(17) 
(Q=0.36)  and ~/=0.01781 (17) (Q=0.43) ,  respec- 

1.48 

1.47 

T 

1,46 

1 ,45  

1.44 

1.43 

1.42 

1.41 

0 ,00  

I , , , , I . . . .  

0.01 0 , 0 2  
L-1/o.7o4 

Fig. 2. Variation of  the pseudo transition temperatures Txg ~ (L) 
and Tcm (L) with L - ~/~, where v = 0.704 ( 6 ) is our FSS estimate 
(see text). The fits yield estimates of f lc=0.6930(3)  ( Q =  1.0) 
andf lc=0.6925(9)  (Q=0 .80 ) ,  respectively. 

tively, that are again in perfect agreement with the 
scaling predictions based on the corresponding fits 
to the magnetization. This is not unexpected since 
the measurements of ( rn )  and g are of course 
strongly correlated. Finally, analyzing the FSS be- 
havior of the susceptibility maximum, X ~ , o c L  r/~, 

we estimate t?=0.0231 (61) (Q=0.60) .  Notice that 
all MC estimates are lower than the field theory val- 
ues which are ~/=0.033(4) [17] and ~/=0.040(3) 
[18] **2. 

The specific heat exhibits a finite, cusp-like sin- 
gularity, because a has a negative value. We tried a 
three-parameter fit of  the form Cmax = a -- bL'~/~. The 
result a / v = - 0 . 3 3 ( 2 2 )  (Q=0.69)  is comparable 
with the scaling relation (8), but due to its very large 
statistical error, it does not provide a stringent test 
of this scaling prediction. Another way of testing eq. 
(8) is to assume the predicted value of oL/v = -0 .159 
and to fit only the parameters a and b. The resulting 
fit turned out to be of almost equally good quality 
[15]. 

In summary, using high-precision data from sin- 
gle-cluster MC simulations combined with opti- 
mized multi-histogram techniques, we have per- 
formed a fairly detailed FSS analysis of the 3D 
classical Heisenberg model on simple cubic lattices 
of size up to 483 . Qualitatively, our main result is 
that the asymptotic FSS region sets in for small lat- 
tices sizes, L z 12. Quantitatively, our value for the 
critical coupling, pc=0.6930( 1 ), is in almost perfect 
agreement with the MC estimate reported recently 
by PFL [3 ], but is significantly higher than esti- 
mates from high-temperature series expansion anal- 
yses and transfer matrix methods. Our results for the 
two basic critical exponents, v=0.704(6)  and 
fl=0.362(4),  are in good agreement with field the- 
oretical predictions. Scaling relations imply 
ix= -0 .112(18)  and ~ /=2-y /v=0 .028(2 ) .  Direct 
measurements of these exponents provide tests of the 
scaling relations. In the case of ~/we find good agree- 
ment when the scaling ofx  at tic is considered. Using 
X c at fie or X~ax, however, the situation is less clear. 

~2 In a recent recalculation [ 19 ] of  all Feynmann graphs several 
errors in the highest order of  the e-expansion were corrected. 
A subsequent reanalysis [ 201 of the resummed series gave a 
slightly smaller value for F/. Compared with the error bar, how- 
ever, this correction is negligible. 
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In  the  case o f  a ,  i ts  n e g a t i v e  va lue  causes  n u m e r i c a l  

p r o b l e m s ,  s ince  a f in i te ,  cusp- l ike  s ingu la r i ty  is no -  

t o r i ous ly  d i f f icu l t  to  analyze .  

T h e  n u m e r i c a l  s i m u l a t i o n s  were  p e r f o r m e d  o n  the  

C R A Y  X - M P  a n d  Y - M P  o f  t he  K o n r a d - Z u s e  Z e n -  

t r u m  f'tir I n f o r m a t i o n s t e c h n i k  Be r l in  ( Z I B )  a n d  the  

C R A Y  X - M P  at  t he  R e c h e n z e n t r u m  d e r  Univers i t~ i t  

Kiel.  We t h a n k  b o t h  i n s t i t u t i o n s  for  t h e i r  g e n e r o u s  

suppo r t .  
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