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We investigate higher-order Trotter formulas which converge more rapidly towards the continuum than the usual version. We 
derive a formula which is convergent up to fourth order in the discretization parameter. We test this formulation by applying it to 
the path integral treatment of the quantum mechanical harmonic oscillator and to a quantum statistical toy model. Some problems 
inherent in this approach are pointed out. 

1. Introduction 

In many cases of  practical interest involving func- 
tional integration it is necessary or unavoidable to 
do the calculations explicitly with the discrete ver- 
sion of the path integral. This necessity arises if  the 
legitimacy of the limiting procedure is dubious as is 
the case, e.g., in derivations of  the Fokker-Planck 
equation from path integral representations of  the 
heatbath where the well-known problem of operator 
ordering notoriously manifests itself [ 1 ]. Also deal- 
ing with the discrete version is unavoidable if cal- 
culations are to be performed by the computer as in 
Monte Carlo simulations [ 2 ]. It is therefore highly 
desirable to have discrete formulations of  the path 
integral that approximate the continuous case to a 
high degree of accuracy, and various attempts in this 
direction have been published in the last years (for 
a review see, e.g., ref. [3] ). 

One way to improve the convergence of the dis- 
crete path integral is to work with better approxi- 
mations of  the short time propagator. Since quan- 
tum effects are effectively suppressed for short times, 
this can be achieved by using a semiclassical expan- 
sion of  the Wigner-Kirkwood type [ 4 ]. Rederiving 
the first terms of this expansion such an approach 
was first proposed by Makri and Miller [5 ]. Re- 
cently precisely the same method has been rediscov- 
ered and extended to curved manifolds [ 6 ]. Another 
promising possibility is to apply variational approx- 

imations to the short time propagator [ 7 ]. Other ap- 
proaches based on the Fourier decomposition of path 
integrals are described in a recent review by Doll et 
al. [8]. 

The Trotter formula [ 9,10 ] provides an elegant 
way to derive the path integral representation of a 
quantum mechanical system and another suitable 
way to look for improved discretization schemes. The 
underlying mathematics being quite general, corre- 
sponding low-order discretization schemes have also 
been discussed in the context of  classical physics (for 
electromagnetic pulse propagation, see, e.g., ref. 
[ 11 ] ). Generalized Trotter formulas proposed by 
Suzuki [ 12 ] considerably improve the convergence 
of the discretized path integral and have successfully 
been used in Monte Carlo applications [ 13,14 ]. A 
disadvantage of these generalized Trotter formulas, 
however, is that they involve higher commutators of  
the operators. In this paper we also investigate an 
approach to find more sophisticated versions of  
Trotter formulas which, however, are independent 
of  the commutator. Outlining this approach in sec- 
tion 2 we find an improved Trotter formula which 

• is convergent up to fourth order in the discretization 
parameter. In section 3 we use this formula to derive 
a more rapidly converging discrete formulation of 
the path integral. The rate of  convergence is explic- 
itly demonstrated in section 4 by specializing to the 
harmonic oscillator potential. In section 5 we con- 
sider a quantum statistical toy model and show that 

0375-9601/92/$ 05.00 © 1992 Elsevier Science Publishers B.V. All rights reserved. 199 



Volume 165, number 3 PHYSICS LETTERS A 18 May 1992 

bet ter  convergence can be gained also in this field. 
Although the approach  invest igated here is feasible 
in principle it is nonetheless mar red  by difficulties 
which arise in pract ical  appl ica t ions  and are dis- 
cussed in section 6. 

2.  H i g h e r - o r d e r  T r o t t e r  f o r m u l a s  

Trot ter ' s  well-known formula  in its s implest  ver- 
sion states that  for any two non-commut ing  opera-  
tors A and B the following ident i ty  holds (for tech- 
nical detai ls  see ref. [ 10] ), 

eA+B-~ l im (eA/NeB/N)  N . ( 1 )  

Clearly, for finite N the error  on the r.h.s, of  this 
equat ion is of  order  1/N, and  a symmet r iza t ion  o f  
the decompos i t ion  like eA/ZNeB/Ne A/2N yields an error  
of  order  1 / N  2. 

The idea o f  the approach  that  we are invest igat ing 
here is that  the error  in t roduced  by the spli t t ing o f  
the exponent ia l  may  further  be reduced by working 
with a decompos i t ion  like 

ea lA / Ne'Ol B / UeaZA / U e'OZB / N... , 

where some f reedom is gained to adjust  the coeffi- 
cients. More  specifically we expand  e <A+B)/N and 

e ~, ,A/NePl BINeO~r.A / Nefl2B/N.." 

in powers of  1 /N  and try to adjust  the coefficients 
c~j, /~j under  the obvious constraint  that  2jo~i= 
2j  flj= 1. For  the simple decomposi t ion eA/Ue B/x used 
in ( 1 ) we see that  there is no f reedom to adjust  any 
coefficient at all, whereas the symmetr ized  version 
has one free coefficient which is uniquely deter- 
mined  to be ½ to equate the terms o f  order  1 I N  2 ~ 

Proceeding in this way (see table 1 ) we f ind that  a 
decomposi t ion of  four exponentials yields the needed 
coefficient non-uniquely but  does not  yet allow one 
to equate the cubic terms. Convergence up to third 
order  may eventual ly be achieved by start ing with a 
decompos i t ion  of  five exponentials .  The coefficients 
in this case are uniquely de te rmined  and turn out  to 
be complex.  Start ing with a decompos i t ion  of  six ex- 
ponent ia ls  a free pa ramete r  is gained again in the 
coefficients but  no bet ter  convergence may be 
achieved.  Note  that  in this case one of  the a ' s  and 
one of  the ffs are always negative no mat te r  what  
value we take for the free pa ramete r  ~,. 

Since our pr imary concern in this investigation was 
to f ind a rapidly convergent solution which could also 
easily be used in pract ical  appl icat ions  we eventually 

t r ied a decomposi t ion  of  seven exponent ia ls  and 
found that  

,t Note that the convergence of the full Trotter formula for e A+a 
is trivially reduced by one order compared to the decomposi- 
tion ofe ~A+B)/N. 

Table 1 
Coefficients of higher-order Trotter formulas. ), is an arbitrary parameter, and F is defined by F-= [ (-1273+45~2--487+ 16)/ 
( - 127+9) ]1/2. The order of convergence refers to the decomposition ofe A+B as, e.g., in ( 1 ), (2). 

Number of al Pl a2 ]~2 a 3  ]~3 O~ 4 O 
exponentials 

1 
2 1 1 

1 1 1 
3 ~ 1 ~ N~ 

1 1 1 
4 1 -  Y 2~ Y 1-  ~ N-- 5 

5 3 +ix/3 3 +ix/-3 1 3T- ix/3 3-T- i,~/3 1 
12 6 2 6 12 N --5 

1 ~--y+_W_F y + F  13-47 y-T-F 1 3y-4-T-F 1 
6 l - y  27 y+F 2 22-37  2 1 27 7T-F N ~ 
7 /~l 1 1 - - 2  t/3 1 --2 t/3 1 fll 1 

T 2 - 2  '/3 - - - - ~  fl' -2t/3Bl - - - ~ / / '  2-21/3 T N ~'~ 
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cA+B= ( eatA/NefltB/NeO~BA/Ne#2B/N 

× e~ZA/UeP'Bme"'Am)N+ O ( 1/N 4) , (2) 

where 

1 
J~l = 2_21/3 -+1 .35 . . . ,  /32 = - 21/3fll = - 1.70..., 

1-21/3 
oq = ½ill = +0.67..., or2= 2 fll = - 0 " 1 7  .... 

(3) 

There is also another set of complex coefficients but 
if we impose the restriction that the coefficients be 
real this choice of coefficients is furthermore unique. 
We will now examine the usefulness of this formula 
in two applications. 

3. Convergence of the discretized path integral 

Let us briefly recall how the path integral repre- 
sentation of a quantum mechanical system is de- 
rived using the Trotter formula. Starting from the 
time propagator 

( Xbtb lXat~ ) 

[ i(~m+V(Yc))(tb--ta)]lX~> = < Xb I exp L -  

(4) 

we cut the time interval into short pieces of length 
e =- ( tb- t~ ) /N by inserting N -  1 complete sets of po- 
sition eigenstates, 

~ ax j lx j  > <xjl = l . 

The exponentials of the short time propagators are 
now split according to Trotter's formula ( 1 ), 

e x p [ -  i~ (/~2 
h k2rn + V(~) ) ]  

~exp(  i e ~ - - ~ ) e x p ( - i ,  ~ v ( ~ ) /  (5) 

or, using the symmetrized version, 

e x p [ -  i~[/~2 i, h k2m +V(Yc))]~exp(-  ~ V(Yc)) 

×exp(  i'~-~m)eXp( - h  2-hi' V(2)) . (6) 

To proceed we need the matrix elements 

( x j l e x p ( - i ' / ~ 2 \  ( m ~,/2 a  m)lXJ-, 
r ira, (x,-;_, ×expL )2], (7) 

where we have included an arbitrary real constant fl 
the relevance of which will become clear later on, 
presently we have fl= 1. Using (5) and (7) we fi- 
nally arrive at the path integral representation of (4) 
as the limit 

tb 

f ( i f  ) (Xbtblx.t.>= ~xexp  ~ [½m22-V(x)]dt  
ta 

,=, expl~,_L, k2- \ -~ 

- v(/,_l)]}, (s) 

where A = (2nihe/m)1/2 and Xo--Xa, X,v=--Xb. 
Clearly, the ordinary path integral given in (8) is 

accurate only to O(1 /N) .  Using the symmetrized 
version (6) instead of (5) the discretized action in- 
tegral in the exponential would contain an addi- 
tional term (ie/2h) [ V(XN) -- V(Xo) ], and the over- 
all convergence of the path integral would be of O ( 1 / 
N2). Note that the version with the better conver- 
gence is obtained by discretizing the potential in the 
action integral according to the trapezoidal rule in- 
stead of the primitive Riemann sum. The situation 
is thus quite similar to the convergence behaviour in 
ordinary numerical integration. For the following ar- 
gument it is, however, essential to realize that this 
similarity can at most serve as a heuristic argument. 
The different convergence behaviour is really a con- 
sequence of the better convergence of the Trotter 
formula in its simple but symmetrized version as 
pointed out in section 2. The point is now that the 
modification of the Trotter formula given in eq. (2) 
allows one to derive a discretization which is even 
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more rapidly convergent. The only difference is that 
instead of using (5) or (6) the exponentials are ap- 
proximated by the decomposition according to (2), 

ie ( f ~ - +  V ( ~ ) ) ] ~ e x p (  ~-V) e x p [ -  ~ -Ctl 

× e x p ( - f l ,  i~ ,O 2 '~ { i~ exp -.  / 

× e x p , - p 2  ~ ~mm) expk-o~2 ~ IV) 

( . iE/)2"~ { g i ~ v )  
Xexp - # ,  ~ m m ) e X p ~ - a ,  , (9) 

with the coefficients c~j, flj given by (3). Due to the 
extra exponentials in (9) we will now have to insert 
3 N -  1 instead of only N -  1 position eigenstates, i.e. 
we will have to work with a finer time slicing. This 
disadvantage will eventually, however, be compen- 
sated by the more rapid convergence. Furthermore 
we will now have to use (7) with fl= fl~ respectively 
f12. The final result then reads 

tb 

I ~ x e x P ( h  f [ ½ m j c 2 - V ( x ' ] d  t)  
la 

- ~ O  A l A3 

N-l(fdx3jfdx3j_l,dX3j_2~ [i ) 
×I - I  -A7-3 J A2 J - - ~ l  ,)exPkh ~N j = l  

+ O ( 1 / N  4 ) , ( 1 0 )  

where 

~ N ~  E - - ~ 1  V ( X 3 j - 3 )  
j = l  

+ m ?%-2 x 3 j - 3  
~ ~2 V(X3j~2) 

2 

--~--m_ (X3j-I ~ X3j-2 ) --~2 V(X3j_I) 
+ 2fl2 \ 

(7~3j -- X3j _ 1.'~ 2 Ol V(X3j)] (11) 
m 

and g=~e, ~j=3otj, ]~.=3flj, Xo~X~, X3N=--Xb, and 
A, =-A3 =- (2nih~fl,/m) ~/2, A 2 -  ( 2n ih~2 /m)  ~/2. 

Eqs. (10) and ( 11 ) are to be compared with eq. 
(8). Note that up to this point the treatment is com- 
pletely independent of the potential. Also note that, 
although the formula does look quite lengthy at first 
sight, its content is rather simple. The only differ- 
ence to (8) is that the sites of the time lattice are pe- 
riodically decorated with simple, real numerical 
factors. 

The feasibility of this formula shall now he dem- 
onstrated by applying it to the harmonic oscillator 
potential. 

4. Application to the harmonic oscillator 

Since the purpose of this section is to demonstrate 
that the discretization of eqs. (10) and ( 11 ) does 
indeed provide an approximation of the continuous 
path integral accurate to O ( 1 / N  4) we will take a 
short cut of the calculation and only look at the 
"quantum mechanical partition function" 

~QM = j dx  ( xtb I xta ) • ( 12 ) 

Inserting the harmonic oscillator potential V= 
½m~o2x 2, the additional integration allows us to 
write ~2 

3N (~ OXkX~I,2.3/ \/rtefim ) ' ~ Q M ~ - - - l i m  1-I T-- - lexPlgg7. . - (xTMx)  
N ~ o o  k =  l , , 

N 3N/2 
= lim ( 1 ] (27tihg] 

(13) 

where x T= (Xl, x2,..., X3N), and M is a 3N× 3N ma- 
trix of the following structure, 

M =  

tb d 
d b 

C 
C 
a C 

C b d 
d , , " . 

c~ 

b c 

kc c a~ 

, ( 14 )  

~2 To avoid problems with caustics we confine ourselves to the 
case og( tb- ta ) < Tt. 
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with 

a =  - 2~t (gin)2+ 2/ffl , 

b= - ~2(~o~)2+ 1//7~ + 1/ff2, 

c = - l / f f , ,  d = - l / f i 2 .  (15) 

The determinant of  M can be found by the fol- 
lowing strategy. First we eliminate the entries in the 
upper right and lower left corner by expanding the 
determinant. We are then left with the problem of 
finding the determinant of  a tridiagonal k T × ~  ma- 
trix I~1 with periodically repeated entries. To calcu- 
late det I~1 we define an auxiliary lower triangular 
(37+ 1 ) × (.~+ 1 ) matrix 

W =  

W 

V 1 Ul 

l)2 U2 

/33 U3 

Vl u,),. 
• ° ° ° 

(16) 

with trivial determinant. We then expand 
det(~lVVT)=w2detU-w2v 2 de tU ' ,  where U has 
the same structure as I~1. Equating I~1 = U we obtain 
u~, v~ as functions of  a, b, c, d b y  solving quartic equa- 
tions. To get rid of U' we choose w= 1/vt and select 
two sets of  solutions u~_+, v~_+ with v2+ #v2_.  By 
forming a linear combination we can now express 
det 101 as 

det I ~ =  det(W+Wx+ ) - d e t  ( W - ~ / r - )  
w~+ - w  ~_ 

and thus det I~1 as a function of ui_+, vi_+. We even- 
tually end up with 

det M = - ( - c2d) N X 4 sin 2 ( ½N¢I2), (17) 

where 

2bc2-a(b2-d2)  
cos(el2) ~ 2c2d (18) 

Together with the prefactors in (13) the final result 
may now be written as 

1 ( 19) 
*ZOM = 2i sin[½Q(tb--t ,)  ] ' 

1 
~QM= 2i sin[½m(tb--ta)] " (20) 

To check the convergence behaviour we use defini- 
tion ( 15 ) to express cos (el2) given in ( 18 ) in terms 
of the weights ai, fli, 

cos(El2) = 1 - (~m)2(2alfll + a i r 2  +2ill or2 ÷ 0/2fl2) 

+ (¢w)4fl, a2(2alfl, + 2 a i r 2  +a2f12) 

- -  ( E t O ) 6 0 / l f 1 2  0 /2f l2  (21) 

( ~ ( / ) )  2 ( E O ) ) 4  

=1 + - -  
2! 4! 

5 (22) _ ( _  42/3+4' /3--4 ) (eO96,)6 

In the last line we have finally inserted the explicit 
values for the weights given in eq. (3). Clearly the 
discrete frequency 12 agrees with the continuous one 
up to fourth order in ~ whereas the usual discreti- 
zation is correct only up to O ( C )  as can readily be 
seen by inserting a l = ½, f l l  = ½, 012 = f12 = 0 into (21 ). 

5. Quantum statistical toy model 

The derivation of the path integral as given in the 
previous two sections does not take over to the 
Euclidean case which is due to the fact that the 
Euclidean version of (7) is only valid for positive fl 
whereas r2 as given in (3) is negative. In the treat- 
ment of  the harmonic oscillator this problem is re- 
flected by the fact that M would contain negative ei- 
genvalues which would invalidate a Euclidean version 
of (13). For this reason we will now discuss the ap- 
plicability of the higher-order Trotter formula (2) to 
a quantum statistical toy model which has also been 
treated in a similar context in ref. [ 13 ]. The moti- 
vation for this investigation is that in quantum sta- 
tistical spin models the operators A and B are usually 
compact and thus one may expect that the above- 
mentioned problem will not be encountered in these 
applications. 

Consider the single site problem 

~=-Trexp(Ja~+FG) , (23) 

which is to be compared with the continuum result 
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where cr are spin-½ operators. It is a one-line calcu- 
lation to show that the exact partition function of this 
simple problem is given by 

~e = 2 c o s h ~  2 . (24) 

To apply the Trotter formulas we write 

~ = T r  M N , (25) 

where for the usual version M is given by 

M (1) =e~J/N)a~e(r/N)a~ (26) 

and for the more rapidly converging version by 

M (11) ~_ e~l (d/N)CrZel31 (F/N)axeOt2 (J/N)aze&(F/N)ax 

X ea2<J/N)aze a' <r/N)axeal(J/u)°z. (27) 

Note that since det MN=det M = 1 the matrix M has 
eigenvalues 2 + with 2 +2 _ = 1 and we can write quite 
generally 

~ u = 2  cosh (N In 2+ ) =-2 cosh f ly ,  (28) 

with 

cosh(12x/N) = ~ Tr M . (29) 

Applying the Trotter formula in its ordinary version 
( 1 ) we now obtain 

cosh(f2~ ) /N)  =cosh(J/N) cosh(F/N) , (30) 

whereas the sophisticated version (2) yields 

cosh (g2~} l) /N) 

= cosh (J/N) cosh z (ill F/N)  cosh (fl2F/N) 

+ cosh [ 2 (oq - o~2)J/N] sinh 2 (ill F/N) 

X cosh(/~2 F/N) + 2 cosh(2oq J/N)  sinh(/~ F/N) 

× cosh(//l F/N) sinh(~2F/N) (31) 

for arbitrary o¢;,//j. From this we find that the exact 
partition function is approximated by 

~ ' )  = ~ +  JzF2 s inhx/Y~F2 {612/~ +//22 
12V/J 2 + F 2 

1 
+ 8 ( c <  - c~2)2b '2 + 16,g,& c~, ~] - 2 }  N2 

+ O ( 1 / N  4 ) . (32) 

For the simple version we put •1 = ½, ]~2 = 0 and obtain 

Ja-F '2 s i n h ~  
: ~  = ~ +  

3 ~  2 N 2 

+ O ( 1 / N  4) , (33) 

whereas the coefficients of (3) give as expected 

~ z )  = ~ + 0 (  1 / N  4) . (34) 

6. Discussion 

Higher-order Trotter formulas provide a very gen- 
eral and systematic way to derive discrete approxi- 
mations of path integrals for quantum mechanical or 
quantum statistical systems. These discretizations 
converge more rapidly while being only slightly more 
complicated than the usual low-order formulation. 
This has been demonstrated for a version of the 
Trotter formula which exhibits an increase of the rate 
of convergence by two orders of magnitude in the 
discretization parameter. This advantage, however, 
cannot be readily exploited in Monte Carlo simu- 
lations (as was our primary hope when starting this 
investigation) since a Euclidean version of the more 
rapidly converging discrete path integral does not ex- 
ist. This restriction is a consequence of the fact that 
the negative coefficients of the higher-order Trotter 
formula imply a negative mode which cannot be in- 
tegrated out since the range of integration is infinite. 
The resulting divergences are quite similar to the ones 
appearing in the treatment of metastable systems. 
They are of an intrinsic nature since the operators in 
the path integral are essentially non-compact. 

We have therefore investigated quantum statisti- 
cal spin models where the non-commuting operators 
of the Trotter formula in contrast are compact. En- 
couraged by the successful treatment of the quantum 
statistical toy model which demonstrated that in- 
deed no principal problems are encountered in this 
case, we then tried to apply the higher-order Trotter 
formula to the less trivial two-dimensional trans- 
verse Ising model. Again, however, the more rapid 
convergence could not be exploited in numerical 
computations since in this case some of the local 
Boltzmann weights turn out to be negative (as it often 
happens with quantum Monte Carlo formulations) 
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and  r ende r  the  n u m e r i c s  unstable .  I t  is the re fore  an  

open  p r o b l e m  whe the r  this  a p p r o a c h  or  a m o d i f i -  

ca t ion  t h e r e o f  will  be o f  p rac t ica l  use in this  field. 

Since,  however ,  the  T r o t t e r  f o r m u l a  in its i m p r o v e d  

f o r m  is still per fec t ly  genera l  it is conce ivab le  that  it 

m a y  be  o f  use in o the r  f ields o f  physics  (e.g., laser  

b e a m  design [ 11 ] ). In  q u a n t u m  m e c h a n i c s  a n o t h e r  

app l i ca t ion  m a y  be found  in n u m e r i c a l  eva lua t i ons  

o f  pa th  integrals  in real  t ime,  a technica l ly  chal leng-  

ing p r o b l e m  where  cons ide rab le  progress  has been  

m a d e  in the  last few years  ,3. 

,3 Early attempts to treat this problem are reported in ref. [ 15 ]. 
For a review of the recent development in this field see ref. 
[3]. 
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