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The large-order behaviour of perturbation coefficients for anisotropic anharmonic oscillators with potential V(x, y)= 
½ (xZ+y 2) +2(x4+2cxZyZ+y 4) is rederived by means of the path-integral approach. This derivation turns out to be much sim- 
pler than the original one by Banks, Bender and Wu, applying multidimensional WKB techniques. 

1. Introduction 

Several years ago Bender and Wu [ 1 ] applied WKB techniques to the calculation of  large-order terms in the 
Rayleigh-SchriSdinger perturbation series for various anharmonic oscillators. For isotropic potentials, most of  
their results have been rederived from path-integral approaches [2] (a very short derivation is given in ref. 
[ 3 ] ). It is generally appreciated that the latter calculations are conceptually more transparent, allowing, e.g., 
for simple scaling and symmetry arguments. In most cases they are also technically simpler and, furthermore, 
they can be generalized to field theory (for reviews see ref. [4];  see also the forthcoming introductory text 

[31).  
Applying rather involved mult idimensional  WKB techniques, Banks, Bender and Wu (BBW) [ 5 ] were able 

to extend their approach to anisotropic problems. As a typical example they considered the Hamiltonian ( r =  
(x,y)) 

H =  ½p2 + ½r2 _~_/]. (x4..~ 2cx2y2 q._y4 ) ( 1 ) 

and derived the large-order behaviour of  perturbation expansions in 2 for the ground-state energy of  ( 1 ), 

E o =  ~ Eo,k 2k ,  (2) 
k = 0  

depending on the anisotropy parameter c>~ - 1 (for c<  - 1, the potential is not bounded from below). Their 
calculation is based on a sequence of  ingenious transformations which are difficult to motivate, combined with 
various approximations which require careful justifications. Finally they end up with a Riccati equation which 
can be further transformed into an associated Legendre equation whose solutions are known. 

The purpose of  this brief note is to show that all such complications are avoided in the path-integral ap- 
proach. In the isotropic case this is well known, but, when applied to the anisotropic Hamiltonian ( 1 ), the 
advantages are even more impressive. Working with Langer's [6] formulation (which is closely related to Li- 
patov's [7 ] )  and making use of  known results for the one-dimensional anharmonic oscillator, we shall re- 
produce the results of  BBW very easily in a few lines of  calculation. In particular the leading behaviour of  the 
large-order terms can be understood by simple symmetry arguments. 
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2. P a t h - i n t e g r a l  a p p r o a c h  

To start let us briefly recall the general f ramework of  the path-integral approach in Langer's formulation. It 
is based on the path-integral representation of  the quantum partit ion function 

Z =  9 . 2 r e x p ( _ ~ / [ r ] ) 4  e x p ( - f l E o )  , (3)  

where 

#/2 

< / [ r ] =  J dr  [½i2-k½r2+).(xa-'}-2cx2y2-k)'4)] (4) 
#/2 

is the Euclidean action corresponding to the Hamil tonian ( 1 ), f l -  I / kBT is the inverse temperature,  and 
~72r- ~[~'_ ~ d2rff2~e, denotes the usual path-integral measure on a sliced " t ime"-axis  with spacing e = fl/N. The 
palhs in (3)  are assumed to be "per iodic" ,  i.e., r(- ,8/2)=r(/3/2).  

For positive coupling 2, the system is stable and Z is real. For negative coupling 2, however, the system be- 
comes unstable and Z develops an exponentially small imaginary part  ( x exp ( - 1/a  ]2 ] ) ) related to the decay- 
rate. For small 2 < 0, this can be computed  in a saddle-point approximat ion by an expansion around non-trivial 
"'critical bubble"  or " ins tan ton"  solutions which extremize the action ( x  1/a 12J ). By taking the large fl limit 
in (3) ,  one finds then immediately  the decay-rate F of  the ground-state resonance, 

1 I m Z  #~'~ 
- - ~  ~ F = l m E o ~ e x p ( - 1 / a l 2 1 ) ,  (5)  

- f l R e Z  

and by means of the dispersion relation [1,5,8] 
0 

1 [" Im E o ( 2 + i 0 )  
Eo~.= d2 

' rc 2 k+'  ( 6 )  ) 
- -  ,a- 

the corresponding large-order behaviour  of  the coefficients in the expansion (2).  In eq. (5) the fact was used 
that Im Z ~ c e x p ( - f l )  e x p ( -  1 /a l2l  ) is much smaller than Re Z = e x p { - f l [  1 + O ( 2 ) ] }  (which results from lo- 
cally stable fluctuations around r = 0 ) .  Let us now apply this approach to the Hamil tonian ( 1 ) and determine 
along these lines the precise form of  I m E o  as 2--+0- and thus Eo,k as k--+oe. 

2.1. C a s e - l < ~ c < l  

For - 1 ~<c< 1, the potential t e r m  x4-}-)2 4 in (4)  is dominant  compared  with 2CX2y 2, SO that the "tunneling- 
paths"  of  extremal action ~' are obviously straight lines along the coordinate axis. Along these rays, say 

xc(r)  -= uc(r)  >~ 0, y c ( z ) - 0 ,  (7)  

the action 

J f d T ( ~ . 2 +  ½ ~ . 1 
, 0 ] =  Uc+XUc)= 312l U c 

is extremized, in the large fl limit, by the well-known "critical bubble"  solution [2] 

u,.(r ) = q/2. [1_2 1 
I c h ( r - r o )  

(8) 

(9)  

"~ More  precise ly  these pa ths  can  be  cha r ac t e r i z ed  as f unc t i ona l  saddle-points with least action. 
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of the one-dimensional anharmonic oscillator. Any choice of ro breaks spontaneously translational invariance 
(for simplicity, we shall set to=0 in the sequel). This gives rise to a Nambu-,Goldstone zero-mode which will 
be taken into account by a careful treatment of the fluctuations around the "critical buble'. Their leading con- 
tribution is found by expanding the full action (4) in the deviations 8x= x-xc ,  ay = y - y c  up to quadratic order, 

. e / - . ~  = f dr [½ (89?2+ 83) 2 ) + (8x2+ 8V 2 ) +2(6X 8y)M(Sx 8y)T +... ] (10) 8.~Y- 

with M denoting the matrix 

2 2 2 M = ( 6 x c  + Cyc 4cxcyc 
- \ 4CXcy~ 6y~ + 2cx 2 J " ( 11 ) 

Inserting the solution (7), (9), M is automatically diagonalized and (10) simplifies to 

1 2c , _ ] 

The Gaussian path-integral over the longitudinal fluctuations 8x coincides with that appearing in the one- 
dimensional oscillator problem and is therefore known [2]. It contains a negative eigenmode, this being re- 
sponsible for the expected imaginary part of Z, and the already mentioned zero eigenmode oc tic(z), associated 
with translations of the "critical bubble" along the r-axis. The well-known result is [2] 

1 8 x ( -  dz f~x- f 9 8 x e x p [ -  ~ f dr ~rSr z +1 - c~zr)Sx] 

( d2 6 ) - ' / 2  i l  ~ 
=det - ~ r 2 + l - c - - ~ r  = - - 5 ~ 6 f l  e -/~/2, (13) 

with the factor - ( i /2) ( 1/Vf3) coming from the negative mode, flx/~z4/27t from the zero mode, and 6 from 
all other modes with positive eigenvalues. 

The transversal fluctuations 8y do not contain any negative or zero modes. To see this we consider first the 
limit c--+ 1 in which the operator governing the transversal fluctuations approaches that of an isotropic oscil- 
lator. This operator is known [2 ] to contain just one zero eigenmode ac uc(z), associated with the rotational 
invariance in this limit. Since the potential-well 1-2c/ch2r becomes shallower for c< 1, all eigenvalues must 
be positive in this case. To evaluate the fluctuation determinant we proceed as follows. First we write 

( d 2 2C)  -1/2 
f~.v= det - ~ + 1 -  c ~  r =-f (z=l )Zo ,c ,  (14) 

where 

- -  = ~ e -p/2 (15) Zosc-det dr 2 + 1 2 sh(fl/2) 

is the partition function of the harmonic oscillator and 

f ( z )  =- (det[  -d2/dr2q-a-s(s+_l )/ch2r]) -1/2 
d e t ( _ d Z / d r 2 + z )  j , (16) 

with s(s+ 1 )~2c. To this ratio of determinants we then apply a general formula in the theory of Fredholm 
determinants stating that [2 ] 
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.fiI) = ( I‘( J&y-( Jz+ 1 +s) 

> 

“2 

T(G)@+ 1) ’ 
(17) 

where r( ) is the Gamma function. In more physical terms, this result can be derived (see ref. [ 31) by relating 

./‘(I) to the transmission amplitude of one-dimensional scattering at the potential z-s(s+ 1 )/ch2r. Inserting 
-- I, we obtain _- 

,&,.= [ -s(s+ 1 )r( -s)T( 1 +~)]“~e-~/*= (J(;;;;y2e-8/2 (18) 

Finally, combining ( 13) and ( 18), and multiplying with a factor 4 for the four equivalent rays ( -t u,, 0), (0, 
I II,), we get for - 1 <C-C I (recall (5) and notice that all B dependent factors cancel) 

and by means of the dispersion relation (6) 

A-m 

E 0.h - - - (-3)kT(k++), 

(19) 

with s(s+ 1) =2c. Expressing s in terms of C, the argument of the square root in ( 19), (20) can be rewritten 
as 

48~ 48c 

~ = -cos[rcJM sin arcs 
>o 

(when CC - 1, cos is analytically continued to cash). The dependence of the square-root factor on c is shown 
in fig. 1. These results are of course in agreement with BBW, who have checked them against exact perturbation 
coefficients in high order. 

Fig. 1. The square-root factor in eqs. (20) and (23) versus the 

anisotropy parameter c. The parameterss, sand Care determined 

from s(s+l)=2c and ~(~+1)=2c=2(3-c)/(I+c). respec- 

tively. By means of the last equation, the curves for - I <cc: 1 
and c> 1 can be mapped onto each other. The rotationally sym- 

metric case c= 1 is an isolated discontinuity, 
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2.2. Case c> 1 

Actually, formula (20) also solves the problem for c> 1. This special property of the action (4) was already 
noted and exploited by BBW. They observed that under the orthogonal transformation 

1 1 
x =  y =  (21) 

the action (4) maps onto itself with "renormalized" parameters 

3 - c  1 - c  
2 ~ Z = ½ ( 1 + c ) 2 ,  c ~ ( =  1 + c - 1 + 2 1 + ~ '  (22) 

satisfying - 1 < ( <  1 for ~ > c >  1. Hence, applying (20) to the transformed action, one has for c> 1 

k+~o 1 (  48g x) l/2 1 ( 48( ~1/2 _3 
Eok)tk~' - -  --~ ksin 7tg/ (-3f fF(k+½)f .k= - ~ksi-~s_ / [ ( l+c)]kF(k+~)2 k , (23) 

with g(g+ 1 ) =2g=2(3-c ) / (  1 +c). 
In view of applications to more general anisotropic anharmonic oscillators it is instructive to derive this re- 

sult once more from a direct calculation. For c> 1, the potential term 2cx2y 2 in (4) is dominant, and the paths 
of extremal action are therefore along the two diagonals in the xy-plane. Along these diagonal rays, say 

1 
Uc(r) -Xc(r) =yc(r )  >~0, (24) 

the action simplifies again to that of a one-dimensional anharmonic oscillator, 

.c,/c~.~/[Uc/v/~,Uc/N/2] f d 2 " [ ' ' 2  ' 2 + ½ ~ ( l + c ) u  4 ] [ 3 ( 1 + e ) 1 2 1 ] - '  = ~uc+~Uc = , (25) 

which is extremized by the "critical bubble" solution 

uc(r) = (1+c)121 c h ( r - r o )  " (26) 

The matrix M governing the coupling between 8x and ~y fluctuations becomes now (see ( 11 ) ) 

u~ (6+2c 4c ) (27) 
M =  2 k 4c 6+2c  ' 

with eigenvalues M~ = 6 ( 1 + c) and M2 = 2 ( 3 -  c). It can be diagonalized by a 45 ° rotation to new coordinates 

1 1 
~ - - ~ ( a x + a y ) ,  q = ~ ( a x - a y ) ,  (28) 

which measure fluctuations parallel and orthogonal to the diagonal. Inserting u~ (r)  from (26), we now obtain, 
instead of (12), 

I f  [ (  d 2 ~ )  ( d 2 dr ~ 2 ( 3 - c ) / ( 1 + c ) )  ch22 - ] 5 .~= dr ~ - ~ r 2  + 1 -  ~+q - + 1 -  r/+ . . . .  (29) 

The longitudinal fluctuations ~ give precisely the same determinant as in (13). For the second operator gov- 
erning the transversal fluctuations r/we observe that 

2 3 - - c  = 2 + 4 1 - - c  <2  fo rc>  1 . 
l + c  l + c  
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By the argument  given above, this implies again a strictly posi t ive spectrum. Hence, appl icat ion of  the Fred-  
holm formula (17)  with 

Y(~+ 1)-_-2 3 - c  = 2 g  
l + c  

leads to the same result as in ( 1 8), with s replaced by .f. Consequently,  the final results reads for c>  1, 

2~'°- ( 48( ")1/2 ]/3 l ,  _ _  ( 1 ) 
l m E o  \ s i n r c $ /  ( l + c ) 1 2 l  exp 3 ( 1 + c ) 1 2 1 )  , (30)  

and by means of  the dispers ion relat ion (6)  we recover precisely (23) .  

2.3. Case c = 1 

The rotat ional ly  symmetr ic  case c =  1 is an isolated discontinui ty.  Although formulae (20)  and (23)  ap- 
proach each other  in the l imit  c-* 1, they are both divergent  (see fig. 1 ). The reason for this d iscont inui ty  is 
the higher symmetry  for c =  1. As ment ioned  above, this leads to a rota t ional ly  zero-mode 3CUc(r) being re- 
sponsible for an addi t ional  act ion factor ~ ~ :  1 / x / ~  in eq. ( 19 ). This in turn modif ies  the leading large- 
order  behaviour  o f  Eo,k in eq. (20)  from F ( k +  ½ ) to F ( k +  1 ), so that  for c =  1 

k - * ~  1 

Eo.k ~ -- -- 6 ( - 3 ) k F ( k +  1 ) ,  (31)  
7~ 

with the constant  prefactor  taken from ref. [2] .  

3. Discussion 

Let us finally ment ion  that  it is s t raightforward to extend the present considerat ions  to the slightly more 
general anisot ropic  potent ials  o f  the type 2 ( ax  4 + 2cx2y z + by 4 ) considered also by BBW. Without  loss o f  gen- 
erali ty we may assume a >  b>_- 0. Then,  for - x / ~ <  c <  a, we can use formula ( 19 ) with 2-~a2 (or, equivalently,  
eq. (20)  with ( - - 3 ) k ~ ( - - 3 a )  k) and c--,c/a. In addi t ion  we have to mul t ip ly  the r.h.s, of  eqs. (19)  and (20)  
by a factor ½, because for a >  b the paths along the y-direct ion no longer contr ibute  to the leading behaviour  
(the discrete Z4 symmet ry  is reduced to Z2). The case c>a can be discussed in a s imilar  way. 

In summary,  we have seen once again that  the path-integral  approach is the ideal tool for der iving large- 
order  formulae,  in par t icular  for anisot ropic  problems.  The calculat ions remain  as s t raightforward as in the 
one-dimensional  case. They are conceptual ly more t ransparent  and technically much s impler  than the original 
der iva t ion  by BBW based on mul t id imens iona l  WKB techniques. 
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