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As a further test of the quality of the recently proposed method of effective classical potentials, we calculate the distribution 
function of a particle in a Coulomb field and compare the result with the exact distribution. 

Recently, a new approximation has been proposed to calculate the partition function of a quantum mechan- 
ical system [ 1 ]. It is based on the Fourier decomposition of the path integral at finite temperature T- lift 
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Since ton = (2n/fl) n, the re im X~, X, integrations for n > 0 are rapidly convergent and can be treated in a self-consis- 
tent one-loop approximation, leaving only the Xo integral to be done with more care. The result is an approxi- 
mation to the effective classical potential W(xo), defined by 
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which is given by 

3 1 {sh[p~2(Xo)/2]~ W(xo) ~ W~(xo)= ~ ogk ~ J +  Va2txo)(Xo)-~Q2(xo)a2(xo), (3) 

where 

Va2(Xo)= f (2~a2)3/2dax exp( (x-x°)2)V(X)2a 2 (4) 

is a potential smeared out with a gaussian of width a 2. The corresponding partition function Z~ approximates 
Z from below. The optimal W1 (x0) is reached for 

a2(xo) = [p~22(Xo)] -l{ [p~2(Xo)/2] cth[flg2(Xo)/2] - 1}, (5) 

where the frequency gJ(Xo) is determined self-consistently from the equation 
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12(Xo) = ~ ( O/Oa z) V~,2(Xo) = ~ ( O/OXo) z Va2(Xo) • (6) 

For a one-dimensional oscillator [1 ] and a double-well potential [2], the free energy calculated from ZI, 
F, - - f l - l l o g  Zi, was shown to reproduce the exact free energy F to within a few percent, even at zero temper- 
ature. The accuracy is explained by the fact that the zero-temperature limit of F~ coincides with the optimal 
expectation value of the hamiltonian operator in a gaussian wave packet, which is known to be a good approx- 
imation to the ground state energy for many smooth potentials. 

For a Coulomb system with a hamiltonian 

ISI= - 1 0 2  - 1 / r  (7) 

the potential is not smooth. Nevertheless, the smeared out potential can easily be calculated to be 
rol 2x/~'~ 
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Hence 
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The optimal expectation of a gaussian wave packet 

~(x)  = (2xa 2) -3/4 e -x2/4a2 

becomes 

(9) 

(10) 

E ° - min{3/8a z + Va2(0)} = - 3/8a2i, = - 4 / 3 n  ~ - 0 . 4 2 4 4 ,  (11 ) 

with the minimum lying at 2 amin = 9n/32. The value -0 .4244  is only 15% smaller than the true ground state 
energy - 1/2 such that W1 (ro) should be a reasonable approximation to the effective classical potential also in 
this case. 

It is the purpose of this note to calculate the particle distribution of  the Coulomb system which can be approx- 
imated by the same method. It is given by [ 2 ] 
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where a 2 (ro), 02 (ro) are found by iterating at each ro eqs. (5) and ( 6 ). 
In fig. 1 we have plotted W~ (ro) for various temperatures. The 1/r singularity is smoothed out by quantum 

fluctuations. For T-*0, the minimum of W~ (ro) is given by E ° ofeq. (8) and for T-- .~,  W~ (ro) approaches the 
classical potential V(ro) = - l/to. In order to compare with an earlier calculation of the densities [ 3 ], the tem- 
peratures are given in K. The connection with our natural units, in which m - memp/( me + mp) = e z = h = 1, is 

f l= (1/kBT)e4m/h 2 =315 605.22 K / T .  (13) 

Fig. 2 shows the distribution itself, except for a factor ( 2 ~ f l )  3/2 i.e., 

g 2 ( x )  ~ ( 2 7 t f l ) 3 / 2 p ( X )  (14) 

in order to have a simple high-temperature limit 
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Fig. 1. The approximate effective potential W~ (r o) for various 
temperatures, once in the isotropic and once in the anisotropic 
approximation (explained in the text). The improvement is bet- 
ter visible in the insert where we have plotted WJV. The corre- 
sponding reduced inverse temperatures fl= 1/Tare 31.56, 15.78, 
7.89, 3.945, 1•9725, 0.9863, 0, respectively. 
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Fig. 2. The particle distribution g2(x) --- (2gfl)mp(x) for the same 
temperatures as in fig. I, once in the isotropie and once in the 
anisotropic approximation (explained in the text). Comparison 
is made with the exact distributions as given in ref. [3]. For low 
and intermediate temperatures, it is sufficient to use the states of 
the lowest three energy levels and the quantum mechanical 
expression p(x)=~-~e-Z,ea12+(1/81t)(l_r+r2/2)e-reals+ 
( l/38n )( 2 43- 324r + 216rZ_48r3 + 4r4 )e- 2~/3ep/18. 

logg2(x)/fl , l / r .  
T ~  o o  

The agreement  with the exact d is t r ibut ions  is becot: ing unsat isfactory at T~< 2 × 104 K. This  corresponds to 
fl > 15 which is quite a low temperature ,  on the natural  energy scale. The  approx imat ion  is therefore astonish- 
ingly reliable. 

The in termedia te  r regime can be improved  by  using the anisotropic  version o f  the same procedure.  For  this 
one takes a smear-out  pa ramete r  which is different  for radia l  and az imuthal  direct ions and calculates 
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From this one finds 
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2 1 1 
t22(ro) -- ~ [ 0  2 + 2 0 2  ] = ~ [O/Oa 2 + O/Oa 2] Va~,a,~ = ~ ~ ~ e x p ( - r 2 / 2 a 2 ) ,  

where 

a 2,T = (1/flg~L,T) [ (fll2L,r/2) cth (flt2L,T/2) -- 1 ] . 

(16) 

(17) 
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The iterative solution of these equations yields the approximation to the effective classical potential 

W(ro) ~-~ w~niS(ro)= ~(log sh[~QL(ro)/2 ] sh[flQT(ro)/2] "~ 
Pg2L(ro)/2 + 2"log ~ ",} 

+ Va~,.a~(ro)(ro) -- ½ [g22(ro)aZ(ro) +2t2-]-(ro)aZx(ro)] . (18) 

Fig. 1 shows the comparison with the isotropic case. The associated density 
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is plotted in fig. 2 (after removing the factor (2hi/)- 3/2). We observe that, for low temperatures, the interme- 
diate r regime is markedly improved with respect to the isotropic calculation. 

In conclusion we see that as long as the smeared out potential Va2(ro) exists, the method may be of practical 
use also in systems whose potential is not smooth. 
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