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FLUCTUATION PRESSURE OF MEMBRANE BETWEEN WALLS 
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We prove that a tensionless membrane,  fluctuating harmonically with free ends between two parallel plates of spacing 2d,  
generates a pressure of the functional form p = (T/Ad)~'a(.Q, where r is the dimensionless variable ~- --- (T//I¢)A//d 2, ~ is the 
curvature elastic constant,  and A the area of the plates. For large A, a(~') becomes a constant  which we determine by Monte 
Carlo simulation to be aoo = 0.060 4- 0.003. 

Membrane layers are attracted to each other by 
van der Waals forces [1] which decrease at inter- 
mediate distances d (20 < d < 100 ,~) like 1 /d  3 ,1 
The most important repulsive force to keep them 
apart is provided by thermal out-of-plane fluctua- 
tions [3,4]. In the absence of areal tension, these 
are so violent that they can be seen in an ordinary 
microscope [5]. The reason for this is that they are 
controlled only by the curvature energy [6] 

e = ½~¢(c 1 + ¢2) 2, (1) 

where c t = I / R t ,  c2= 1 / R  2 are the principal 
curvatures of the membrane and r is the elastic 
modulus ( ~  (2.3 ~- 0.3) × 10 -12 erg for egg lecithin 
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*.1 The l / d  3 law Pvdw ---- --1.4 × 1 0 - 1 s  e rg /d3  is valid for 
intermediate distances (see ref. [1]) as long as retardation 
effects are negligible. These change the faUoff to 1 / d  5 for 
larger distances. For very short distances of order 2 -20  
there are also repulsive hydration forces and electrostatic 
forces which overwhelm the van der Walls attraction but  
which drop of exponentially (see ref. [2]). 

membranes at room temperatures). If the mem- 
brane is parametrized by the vertical displacement 
u(x, y)  over an (x, y)-plane, this has the lowest 

1 2 ~2)u]2. The two-di- approximation e = ~K[(3j + 
mensional laplacian ~2 2 2 = Ox + Oy leaves all 
harmonic field configurations without energy and 
this causes the violence of the fluctuations. We are 
thus confronted with the interesting problem of 
finding the size of the repulsive force between 
membranes. 

For a first estimate we shall study two sim- 
plified idealizations of the physical system, as 
proposed by Helfrich [3,5]. The first is to imagine 
that the undulating neighboring membranes con- 
strain the fluctuations of each membrane on the 
average, in a similar way as a harmonic potential 
would do. Then the partition function of each 
membrane is 

Z = e - ( A / T ) f  

o o  d u ( x )  

× e x p ( - - ~ T S d 2 x [ ( ~ 2 u ) 2 * m 4 u 2 ] ) ,  (2) 

where A denotes the area of the membrane at 
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T = 0. The integral can easily be done giving the 
free energy density 

1 1 c d2k 4 
/ =  j log( + m 4) = ira2 q- const.  

(3) 

The displacement variable has a gaussian distribu- 
t ion P(u) - e -u:/2°2 with a squared width 

f d2k 1 T (4) 
0 "2 = ( U  2 )  = (2,rr)2 k 4 + m 4 8~:m 2" 

Combin ing  (3) and (4), we find that the energy 
changes with average width as follows 

T 2 
f =  - -  (5) 

64x(u  2 ) 

For  not  too small distances d from the neighbor- 
ing membranes,  we may  follow Helfrich [3] and 
expect (u  2) to satisfy 

(u  2) = p d  2, (6) 

with p varying only slowly with temperature,  in 
which case we obtain t he  free energy density 

T 2 
f =  aos~ r d  2 , (7) 

with 

1 
a°~ = 6 4 p '  (8) 

resulting in a pressure 

~f  T 2 
P O(2d)  a°~ rd3  " (9) 

The size of  p is unknown.  If  we assume somewhat  
arbitrarily that the membranes  at u = + d  coin- 
cide with the 20 interval of  the u distribution, 
implying that they enclose 95.45% of all possible 
configurations,  we estimate 

p = ( u Z ) / d  ~ = ~ (10) 

and 

aos~ _ 1 = 0.0625. (11) 

Let us now turn to the second idealization 
which consists of  a harmonical ly fluctuating mere- 

brane between two rigid plates. This model has a 
part i t ion function 

H f_ du(x) ( " fd2x(O2u):) Z = exp - (12) 
d d 

also discussed first by  Helfrich [3,5]. He resorts to 
what  may be called an " independent  membrane  
piece approximat ion"  [5]. Observing that the mean 
displacement 

( . 2 )  = d2k a _ r (13) 
(2,rr) 2 k 4 4vK ,ff2 

diverges with the size of  the area, he mentally 
decomposes  the membrane  into pieces of  size AA 
and argues that between plates at u = _+d, the 
average size of  u z should be (in contrast  to our 
estimate (10)) 

(u  2) = +d 2. (14) 

This is compat ible  with (13) if we imagine the 
membrane  to consist of  a set of independent  pieces 
of  area AA = ~n.r3xd2/T. If  these behave like an 
ideal gas, they exert a pressure 

T 3 T 2 
(15) 

P 2d  AA 4,rr 3 xd 3 

upon  the walls thus resulting in the same law as 
(9) but  with 

a = 0.0242, (16) 

which is much smaller than (11). 
We are able to make decisive progress over 

these estimates. First we observe that by going to 
the reduced quantities U re d = u/d,  Xre d = x /vrA,  
the part i t ion function is seen to have necessarily 

the functional form (~/2~TA/rd 2 )u2~(z), where z 
is the dimensionless variable z - (T /x )A /d  2, and 
N the number  of fluctuating degrees of f reedom in 
the membrane  ( -  number  of  molecules). As a 
consequence the free energy density has the form 

N T  [ 2,nTA ~ T ( T A )  (17) / =  , 

giving rise to a general pressure "law, due to the 
walls, 

3Af T2 a(r ) ,  (18) 
P 3 ( 2 d )  jcd 3 
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where  A f  is the second term in (17) and  a ( r ) =  
dg(~- ) /d~ ' .  

Our  second po in t  is that  the existence of  a 
non- t r iv ia l  t he rmodynamic  l imit  A ~ ~ impl ies  
that  the funct ion g ( r )  has  the l imit ing behav ior  
g (~ )  ~ a ~ "  for • ~ ~ .  Moreover ,  since the mem-  
b rane  becomes  free for d ~  ~ ,  the funct ion g(~') 
canno t  con ta in  any powers  1/~" in this l imit .  Thus,  
we expect  the only  correc t ions  to be  of  the ex- 
ponen t i a l  type  (for ins tance  e-C°nst×'). 

Our  third and  main  result  is a M o n t e  Car lo  
de t e rmina t ion  of the l imi t ing value a ~ .  W e  were 
fo r tuna te  to have recent ly  f inished a s tudy  of  the 
pa r t i t ion  funct ion (12) on a la t t ice  for the pu rpose  
of  unde r s t and ing  a comple te ly  di f ferent  phys ica l  
process ,  namely  that  of  defect  mel t ing  in two-di-  
mens iona l  crystals .  The  fundamen ta l  defects  are  
d isc l ina t ions  [7] and  these in terac t  with each o ther  
e last ical ly  b y  a po ten t i a l  

f d2k 1 elk. x 
( 2 ~ )  2 k 4 

i.e. with the same 1 /k  4 corre la t ions  as in the 
pa r t i t i on  funct ion  (12). The  elast ic  f luc tuat ions  are 
therefore  descr ibed  by  the mode l  (12). The  dis-  
c l ina t ions  are  b rought  in by  res t r ic t ing the values 
of  u to integer number s  [8]. W e  had  s tud ied  such 
a mode l  on a square  la t t ice of  uni t  spacing,  le t t ing 
u run  over  integer  values f rom - h  to h with 
h = 5, Thus  our  da t a  con ta ined  the effect of  walls  
at d i s tance  2 d =  10. F o r  increas ing tempera ture ,  
the model  shows a f i rs t -order  roughening  t ransi-  
t ion (TR/K = 1.63) at  which the var iables  u over-  
come their  discrete  energy barr iers .  This  re la tes  
via dual i ty  to the t rans i t ion  of  defect  mel t ing  (in 
the freezing direct ion) .  A b o v e  this t ransi t ion,  the 
discreteness  of  u no longer  mat ters .  This  is why 
we can use the mode l  with discrete  u ' s  as an 
a p p r o x i m a t i o n  to the m e m b r a n e  pa r t i t ion  func- 
t ion (12). 

W e  upda t e  the conf igura t ions  by  sweeping 
th rough  the ent ire  la t t ice accord ing  to a pe rmu ta -  
t ion chosen r a n d o m l y  af ter  each sweep, and  a p p l y  
the s t anda rd  hea t -ba th  a lgor i thm to each var iable  
u(x)  [9]. Us ing  at  each t empera tu re  250 sweeps 
for  equi l ib ra t ion  and  500 sweeps for  measure-  
ments ,  we found  for a 322 square lat t ice with 
per iod ic  b o u n d a r y  condi t ions  the in terna l  energy 

~ =  - ( 3  log Z / 3 T - 1 ) / A  shown in fig. l a  (x  = 1). 
R igh t  above  the roughening  ( ~  freezing) t ransi-  
t ion,  it d i sp lays  the D u l o n g - P e t i t  law ~ = ½ T char-  
acter is t ic  for  th/e ha rmon ic  elast ic  f luctuat ions  (in 
the crys ta l l ine  state)  thus demons t r a t i ng  the irrele- 
vance of  the discreteness  of  u. Fur ther ,  above  the 

10 l I I ~ .  

/ / "  
Loplociun Rough Model / / /  
322Square Lotfice..h-5 T ~ / / / '  
(250 + 500) sweeps ~ ' ~ / / / /  
+ : heating. / / / /  
o : cooling. / / ~  

C J  - -  T.- 1.63 , , 1 
5 lO ~.5 20 

T 

l i i i ~ o  to 
-A~ o 

522 Lultice, h=5 
(250 +500) sweeps 

lheat, cool. / ~, 
square + o ~" ~ %% 

0 ~6o 2~o 3~o 40 
T 2 

Fig. 1. (a) The internal energy 0= - (0  logZ/OT-1)/area of 
the roughening model (12) on a 32×32 square lattice with 
periodic boundary conditions (K = 1). For T = 1.63 it shows the 
first-order [8] roughening transition dual to the 2D model of 
disclination melting. For larger T it goes over into the Du- 
long-Petit law, # = T/2, and for T > 5 we begin seeing the 
effect of the "walls" at u = _+ 5 confining the membrane. The 
deviations from the Dulong-Petit law A# = 7"/2 - E are shown 
in (b). From these we extract &E = -(0.0024-t-0.0001)T 2 such 
that a~ = 0.060±0.003. The independence of this number on 
the lattice structure is demonstrated by the data points of a 
similar run on a triangular lattice which are fitted very well by 

the same straight line. 
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transition, the fluctuations begin "feeling" the 
restrictions of  the "wal ls"  at u = + 5  and the 
internal energy begins deviating f rom the Du-  
long-Pe t i t  law. The deviations A~ = ~ -  T/2 are 
plot ted against T 2 in fig. l b  for • = 1. They are 
well-fitted by the straight line 

A~ = - (0.0024 + 0 .0001)T 2. (19) 

This is to be compared  with the general form 

A0 8(1/T) f - ½T 

= -(T/A)~'a('r) = -(T2/KdZ)a(r), (20) 

following f rom eq. (17). Inserting d =  h = 5, this 
implies a(~') = a~  with 

a~  = 0.060 5:0.003 (21) 

and confirms that the free energy and the pressure 
have indeed the forms (17), (18) with g ( r )  = a ~ ' .  
We have checked that our  lattice was large enough 
for this calculation by doing the same run on a 
162 lattice which gave the same result. The Monte  
Carlo number  for a ~  is much larger than Helfrich's 
theoretical estimate (16) and in good agreement 
with our  harmonic  oscillator value (11). 

It is interesting to see that the distr ibution of  
u ' s  between the walls is very close to being gaus- 
sian just  as assumed in the harmonic  oscillator 
approximat ion.  For  T =  20 (K = 1) this is dem- 
onstrated in fig. 2a. The squared width 02, how- 
ever, is smaller than what  is estimated in eq. (10). 
It is more like d2/5 than the assumed dZ/4. If  we 
plot  how (u  ~) varies with temperature in fig. 2b, 
we find that  even though the curve saturates rea- 
sonably  fast, it is not  at all constant  in the range 
T ~  (2, 20) where the pressure has the limiting 
functional  form (9). 

A n  impor tant  point  is to make sure that our 
number  for a ~  is a universal result and does not  
depend on the lattice structure. This was done by 
repeating the s tudy for a triangular lattice which 
gave, indeed, the same number  as before (see fig. 
lb).  In this comparison,  we have to use the energy 

x 3 ( 2  6 )2 ,  

2 T 4 ~  Y] [u(x) -u(x+i)]  
i=1 

Z 

0.2 

0.I 

0.0 

t 
l. I I 

16 a Lai r . ,  T=20 

I . . . .  I . . . .  I 

-5 0 5 
u 

A t~ 
4 

. . . .  I ' " '  ' I . . . .  I ' ' ' 
16 z Latt., h=~x=5  

j, 

X,+: h e a t . .  
(b) o,o: cool. (1000+20000) 

.... I .... I .... I .... 

5 10 15 20 
T 

Fig. 2. (a) The discrete distribution of u ' s  of the model (12) on 
a 162 square lattice for T = 20 (~ = 1) in comparison with the 
continuous gaussian distribution of the harmonic oscillator 
model (with 0 2 =  d2 /4  = 25 /4  such as to include 95.45% of 
the data within [ - 5 ,  5]). (b) The squared width a 2 -= (u2> of 
the model (12) on a 162 square lattice against temperature 
(upper data). The center-of-mass movement  of the membrane 
is included since it contributes to the pressure. Without this 
movement,  we find the lower data points. The squared width 
of the center-of-mass distribution is given by the difference. 
The data points are taken in a thermal cycle with 1000 sweeps 
for equilibration and 20000 sweeps for measurement.  The 

curves are eye-ball fits. 
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w i t h  x + i d e n o t i n g  the  n e x t - n e i g h b o r s  such  as to  

h a v e  the  s a m e  c o n t i n u u m  l imi t  

~T f d2k(O2u) 2. 

Fina l ly ,  let  us r e m a r k  tha t  o u r  s t udy  was  re-  

s t r i c ted  to the  h a r m o n i c  a p p r o x i m a t i o n  (12) o f  the  

c u r v a t u r e  e n e r g y  (1). F o r  phys ica l  m e m b r a n e s ,  the  

n o n - l i n e a r  p ieces  wil l  h a v e  to be  c o n s i d e r e d  as 

well .  Th i s  wil l  be  d o n e  in a s epa ra t e  work .  

T h e  au tho r s  are  g ra te fu l  to P ro fessors  N.  K r o l l  

a n d  J. K u t i  for  the i r  k i n d  hosp i t a l i t y  at U C S D  

a n d  to P ro fe s so r  W. He l f r i ch  fo r  d iscuss ions .  
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