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We develop a new lattice model involving Ising spins on links with next-neighbor couplings which contains a parameter 
that interpolates between the standard Ising model (~ = 1) and an ensemble of serf-avoiding random loops (~ = 0). This 

model is studied by Monte Carlo techniques. We calculate the average length and its variance as a function of temperature. 
The reliability of our results is checked at several steps by comparison with the exactly known Ising case on finite lattices. 

Until recently, Monte Carlo investigations of self- 
avoiding random loop or surface ensembles were 
plagued by two types of problems: First, in trying to 
simulate random geometries directly, one could not 
use the same techniques, by which spin and gauge mod- 
els had previously been studied successfully, but had 
to find new procedures whose quality was unknown ,1. 
Second, when imposing the constraint of  self-avoidance, 
the efficiency of the simulations was strongly reduced, 
due to the small acceptance rate of  the randomly gener- 
ated configurations [ 1 ]. This problem became partic- 
ularly severe near the phase transition at which the 
geometric objects proliferate, thereby locking up most 
of the available space. 

Motivated by these problems we were led to devel- 
op a method by which random ensembles of  loops [2] 
and surfaces [3] can be studied via simple models 
which involve spin-like variables with next-neighbor 
couplings. The new models had two merits: First, they 
opened up the difficult hot phase to simple analytic 
techniques, such as mean field approximations plus 
loop corrections. In combination with the known 
strong-coupling series it is now, in principle, possible 
to obtain good approximations to the thermodynamic 
properties of  the ensemble. Second, the models permit- 
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ted the derivation of a simple local field theory which, 
in the critical regime, displayed clearly the universality 
class of  the transition, showing for instance that self- 
avoiding loops proliferate with Ising indices, and that 
self-avoiding surfaces with more than one color in 
three dimensions do not proliferate at all. 

In spite of these merits, the models are unsatisfac- 
tory in that they are not accessible to Monte Carlo 
studies due to their non-Boltzmann form of the parti. 
tion function. 

For loops, this obstacle was removed recently [4] 
by Hofs~iss and Kleinert (HK) who were able to reex- 
press these models in terms of Ising spin variables. 

The purpose of  this note is twofold: First, we want 
to extend the HK spin model by a new term with a 
parameter ~ in such a way that the extended model 
interpolates between the self-avoiding random loops 
(~ = 0) and the proper Ising model (~ = 1). Second, we 
want to simulate this model in two dimensions on the 
computer. The new model has the advantage that we 
can convince ourselves of  the reliability of  our results, 
at each step, by taking the case ~ = 1 and cross-checking 
it with the known exact finite lattice results of the 
Ising model [5]. 

Let us first recall the result of ref. [2] according to 
which the partition function of self-avoiding random 
loops is given by 
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a -- H ( j  0 
- - f f  

X FI [1 +oU(x)U(x+i)], (1) 
X,i 

where x runs through all sites of a simple cubic lattice, 
i denotes the oriented links, U(x) are pure phase 
variables exp[i0(x)], and v = exp( -e /T)  is the 
Boltzmann factor, by which each loop element of 
energy e is suppressed. It is easy to see that the product 
on the right-hand side places chain elements randomly 
upon all links, whose ends are then connected by the 
integrations 

ff 

f dO ~ - [ 1  + (U*)2I .  

--11" 

Each site can harbor at most two elements. Thus 
Zs.a. has the low-temperature expansion 

Zs.a. = ~ v z = ~ exp[-(e/T)L], (2) 
s . a .  s . a .  

where the sum covers precisely all self-avoiding random 
loop configurations. 

The recent Ising spin HK model was obtained by 
taking the "square root" of the factors Fix, i [1 
+ oU(x) U(x + i)] via an auxiliary sum over Ising 
variables si(x ) living on links 

1 E x~,i('~si(x)=±x ) t l + vc°u(x)si( x)l 

x [l + x/~V(x)si(x - 0 l ,  (3) 

and observing that under the integral measure (3) only 
powers UP with p= 0 and p = 2 can survive. Hence the 
product can be replaced by 

E 2-ND x~d (si(x)=± l) 

X ~x (l+oU2(x) E si(x)s](x)), 
±i,±] 
i~l 

where s i(x ) = si(x - i) ,2. Now, the U integration 

,1 In our notation, i covers only the oriented links emerging 
from a site x, ±i runs through all links. 

gives [4] 

Z = 2 -ND xFI[1 (si(x)=± 1} 

D 2 o°1 
= 2-No E II  z (x) ,  

{si(x)=±l) x 

where the factors z(x) are local quantities involving 
only next-neighbor Ising spin on links. 

After this reminder, let us now come to our first 
goal, namely that of bringing the Ising model to a 
related form. For this we rewrite Zlsing as 

1  ox i  s x s x,o) 
Zlsing x \ 2 s(x)=± 1 ] ~ x,i 

(1 ~ )FI[l+os(x)s(x+O], = (ch ~)ND ~x ~s(x)=+_l x,i 
(4) 

where s(x) are Ising variables on sites and v = th 13. 
Then we take again the square root of the right-hand 
product, using new Ising variables on links, 

FI [1 + os(x)s (x  +0]  
x,i 

= 1-Ii '1  ~ ] 1-I [1 +.v'~s(x)s,(x)] 
x,i \2 si(x)=+_l] x,i 

× [1 +VCvs(x)si(x-i)]. 

When working out the product, and inserting it into the 
sum overs(x) = +1, it cannot be truncated as in the 
previous case, where only two terms contributed. The 
maximal number ofs(x)  variables at each site is, how- 
ever, limited by the dimensionality of the lattice. In 
two dimensions, at most four s(x) can fall onto one 
site such that Zlsing becomes 

ZIsing = ( c h ~ 2 N  x,,Fl- "~si=±l ~ Zising(X), 

Z~ing(X) -- I + lo  si (x  ) -- 2o 

+ 0 2 H Si(X)S_i(X ) . (5) 
i 
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It is easy to work out the next terms fo rD  = 3, 4 . . . .  
dimensions• 

Thus, up to the trivial factor ( c h ~  2N, the self- 

avoiding random loops and the Ising model in two di- 
mensions become the two extremes of the single inter- 
polating partition function 

X , i  \ Si(X)=+ 2¢ 

z (~)= i+½o ~ si(~) - 2 o  
~±i=l 

+ ~02 nSi(X)S_i(X), (6) 
! 

for ~ = 0 and ~ = 1, respectively. This is the desired ex- 
tension of  the model which not only stresses the com- 
mon universality class of the two systems but  specifies 
quantitatively the differences. We now rum to the 
second goal of simulating this model via Monte Carlo 
techniques. Due to limitations in space, we describe 
here only measurements of the mean loop length 

( I ) = N  -1 (L)=(NZ) -1 ~ L exp[-(e/r)L] 
s.a.  

=N-Iv(aloe)z, (7) 

and its variance 

(z2)~  - N - 1  [ ~ 2 )  _ (L)21 

= N  -1 FZ  -1 ~ L 2 exp[-(e/T)Ll 
L S.a.  

- z -1 ~ L exp[-(e/r)Ll 
S.a.  

= N - I ( o  a/ao) 2 log z,  (8) 
where N is the number  of sites. Applying these form. 
ulas to (6) we find more explicitly 

/E ( I ) = N  -1 \ x z (x ) / '  

\ 
( \ x  Lz(x) ~z(x)l J +~ = z--'~l / 

i(x) 2 

- [ (x~Z~>]  }, (9) 

where the dots denote the operation "-= va/au. 
The expectation (( . . . )> is defined as 

• ~ i (~ )= .1  6 . . ) l - I z ( x ) .  
X, l X 

The boundary conditions are chosen to be periodic. 
In order to apply Monte Carlo techniques we first 

observe that as long as u < ~-1(1 - X/i - ~) (which 
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Fig. 1. (a) The mean loop length per site (1) as a function of 
the fugacity u = exp(-e/T) where e is the energy per line ele- 
ment. The data are for 2-dimensional s.c. lattices of sizes 2 
X 2,4 × 4,5 × 5, 8 × 8, and 32 X 32, 64 X 64. The numbers 
behind the data symbols give the numbers of runs done for 
equilibration, the same numbers of runs were done for measure 
merit. The curve through the 2 × 2 data gives gives the exact 
solution. The thin lines come from a o I` expansion up to u l° 
and v lz. The dash-dotted line shows the analytic results of 
ref. [4]• (b) The corresponding curves for the Ising model, but 
in the dual loop gas interpretation. The upper f'rve solid curves 
denote the exact results on finite lattices. We also have given 
a few data from ordinary MC runs of the Ising model for com- 
parison. The thin lines come again from a u L expansion, the 
dashed curve from the dual [(1 - o)/(1 + o)]L expansion up 
to the 12th power• 
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tends to 1/2 for ~-+ 0) the factors z ( x )  are positive 
and the partition function has a conventional proba- 
bilistic interpretation. Guided by the experience with 
the Ising model, we used the heat bath updating proce- 
dure. Most data points were taken three times, first 
during a thermal cycle and then, independently by 
single measurements starting with completely random 
or ordered configurations. Typically, we established 
equilibrium by going through 50 000 Monte Carlo 
sweeps after which we measured (l) and (l 2 )c by aver- 
aging over further 50 000 iterations. The resulting mean 
loop length for ~ = 0 (s.a. loops) as functions of  o for 
various lattice sizes is displayed in fig. la. 

In order to have a check of  the finite size scaling be- 
havior, we have calculated the exact partition function 
on a 2 X 2 lattice by direct counting of  loops. With 
our periodic boundary conditions, the general result 
for all ~ is *a 

Z 2 x 2  latt = 1 +402 +(18 + 4~)O4 +4~2o 6 + ~4o8. (10) 

This exact result produces the continuous line in fig. 
1 a in excellent agreement with our data. 

In the infinite volume limit, another useful check 
is provided by an expansion of  the partition function 
in powers of  o, Z = E L g L o  L, where gl, counts the 
number of  loop configurations with total length L. 
Taking the logarithm, we find up to L = 12 

N -1 logZ = o 4 +2u 6 +(~ +2~)o 8 + (4 + 8~)010 

+ ( ~  + 12~ + 6~2)u 12 , (11) 

which for ~ = 1, coincides with the well-known high 
temperature expansion of  the Ising model (apart from 
a trivial term 2 log ch/3) [6]. Note that for o ~ 0.4, 
the 12th order contribution is so small that it cannot 
be seen on the scale of  fig. la. 

The opposite regime u ~ 0.45 of  our data is in ex- 
cellent agreement with another analytic calculation 
given in ref. [4]. For comparison, we show in fig. lb  
the corresponding data for ~ = 1 i.e. for the loop gas 
of  the Ising model. In order to test the accuracy of  
our simulation techniques we have evaluated the corre- 
sponding curves from the finite size exact result for 
the Ising partition function [5]. Using the relation u 

,a As T ~  *% v ~ 1, the mean length tends to 20/23 = 0.8696, 
1 for ~ = 0 (s.a. loops), ~ = 1 (Ising loops), respectively in 
agreement with figs. la, b. 

= th ~Ising we find for the Ising loops 

(l) = -  [o/(1 - o2)](Ulsing + D o ) ,  

(12)c = [°2/( 1 - -  o2) 2 ] ( 1 2 )  

X [(N~]ising)-I Cv  Ising - 20  - o - l (1  + o2)Ulsing] , 

where 

Ulsing =-- - N  -1 (a/~/~) log Zlsing, 

CV Ising ~ N-1 / 32 ( a2/~/32) log Zlsing 

= -/~2(a/a/~)Ulsing . 

i i i 
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Fig. 2. (a) The variance of the loop length per sRe, (I 2 )c 
= ((L 2 ) - (L)2)/N as a function of u = exp( -e /T) .  The upper 
five dashed curves are to guide the eye. The data which fall com- 
pletely out of our set are the 5 X 5 points of ref. [7 ]. The 
other curves come from the same sources as in fig. la. (b) 
The 8 X 8 curves of (I 2 )e in the s.a.loop gas (~ = 0) as com- 
pared with those of the Ising model (~ = 1). We also have given 
the exact 8 × 8 curves and the data of an ordinary MC simula- 
tion of the lsing model. 
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We also found it useful to compare, in fig. lb, our 
results for an 8 × 8 lattice with a standard simulation 
of  the Ising model using site variables s(x) rather than 
our link variables si(x ). 

In fig. 2a we have displayed the variance o f  the 
length ('=spedfic heat) for ~ = 0. It displays a pro- 
noui~ced size dependence. Doubling the linear lattice 
size causes each time roughly the same increment of  
the maximum of  (12)c. This is the typical sign of  
logarithmic scaling (12)c ~" a log n. Thus, in two di- 
mensions, the critical exponent o f  the s.a. loop gas is 
consistent with the Ising value, ot = 0. 

Extrapolating the location of  the maximum for n 
~> 8 to infinite volume we estimate for the s.a. loop 
gas u e "~ 0.42, remarkably close [2] to o C Ising = V ~ '  
- 1 ~. 0.41. At first sight it looks unusual that the 
locations Oma x o f  the (l 2 )c are not a monotonic func- 
tion of  the linear lattice size n, as it is in the specific 
heat of  the Ising model. The location moves first to 
the left, then, for n >~ 8, to the right. The origin of  
this behavior lies in the fact that (12)e is not the same 
as the usual specific heat [see (15)]. Indeed, when 
plotting (l 2 )c for the Ising model we find exactly the 
same behavior. 

In fig. 2b we compare the (12)c curves o f  s.a. loop 
gas and Ising loops (~ = 1) with the exact solution and 
with the data o f  an ordinary simulation. 

Finally, we have tested the interpolation character 
o f  our model by running a few simulations for fixed v 
as a function o f  g. On the 2 X 2 lattice we find com- 

plete agreement with the exact curves derived from 
(13). 

Summarizing we see that our new model permits 
Monte Carlo simulations o f  self.avoiding random loops 
which are just as efficient and reliable as those of  the 
ordinary Ising model. 

Let us finally mention that our results are in serious 
contradiction with the data of  ref. [7]. Their 5 × 5 val- 
ues o f  (l)lie practically on the strong-coupling curve 
for inKmite volume, which they should not, due to 
finite size effects. The disagreement in the variance is 
even more dramatic, as illustrated by the 5 X 5 curve 
in fig. 2a. The discrepancy is apparently due to the 
emission, in ref. [7], o f  closed loops which wind com- 
pletely around the toroidal lattice and which are not 
covered naturally by their direct simulation method. 
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