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Abstract

In this work we investigate the effect of bending stiffness on a homopolymer inside a spherical confinement. In particular we are

interested in the collapse transition and its dependence on the size of the confinement and the stiffness of the polymer. Using an

advanced multicanonical Monte Carlo algorithm, we sample the phase space of a coarse-grained homopolymer model. We find

that the confinement leads to a shift of the collapse transition temperature with a stiffness-dependent direction: flexible polymers

become more unstable for a smaller confinement in contrast to semi-flexible polymers, where the transition temperature increases

with decreasing size of the confinement.
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1. Introduction

There are a variety of studies which investigate the behaviour of proteins inside different kinds of constraints,

some examples can be found in Klimov et al. (2002), Friedel et al. (2003), Takagi et al. (2003), Rathore et al. (2006)

and Bilsel et al. (2012). This topic is of high interest, because closed environments are somehow the natural habitat

of proteins. Understanding the influence is not only important to get an insight into their general behaviour. Also

for applications like building biosensors or the design of drugs, it can be rewarding to understand the influence of

the constraint, especially its influence on the stability of the protein. However, in this work we are not interested

in the behaviour of any chemically realistic protein. Instead we investigate a model for a generic polymer in order

to draw conclusion of the general influence of the confinement. In previous work on proteins, the introduction of

confinement always led to a stabilization of the protein, which means that the transition temperature is shifted to

higher temperatures for smaller sizes of the confinement. In Marenz et al. (2012) we have shown that this does not

hold for a generic model for a flexible homopolymer. Here, we show that the direction of the shift depends on the

stiffness of the polymer, by applying the same model and changing the bending stiffness such that we cover the full

regime from flexible to stiff polymers.
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2. Model

We take a coarse grained approach to model the polymer. The so-called bead-stick polymer has been used before

to study protein folding from a mesoscopic view, see Stillinger et al. (1993), Irbäck et al. (1997) and Bachmann

et al. (2005). Here, we us it as a model for a homopolymer, which means that N identical monomers are aligned

linearly, with �ri being the position of monomer i. To model the backbone of a polymer, the distances between adjacent

monomers are fixed and set to unity (|�ri − �ri+1| = 1.0). The short-range attraction and excluded-volume effects are

modeled via a 12-6 Lennard-Jones potential between non-adjacent monomers. The stiffness is introduced by an

additional cosine potential that depends on the angle between two bonds, which is well-known from the discretized

worm-like chain model. The angle θi is defined as cos θi = (�ri+1 − �ri) · (�ri+2 − �ri+1). The spherical cage is modeled as

a geometric constraint with hard walls. In summary the Hamiltonian consists of three terms,

H ≡ E = ELJ + Ebend + Vsphere. (1)

The first term is the common Lennard-Jones potential defined as

ELJ = 4

N−2∑
i=1

N∑
j=i+2

⎛⎜⎜⎜⎜⎜⎝ 1

r12
i j

− 1

r6
i j

⎞⎟⎟⎟⎟⎟⎠ , (2)

with a minimum at rmin = 2
1
6 where ri j = |�ri − �r j| is the distance between two monomers. The second term in (1) is

the bending energy

Ebend = κ

N−2∑
i=1

(1 − cos θi) , (3)

in which we can use the parameter κ to modify the bending stiffness of the polymer. The third term in (1) models

the spherical constraint as a Θ-function which suppresses every state where at least one monomer is located outside a

sphere of radius R,

Vsphere =

{
0 if all |ri| < R
∞ if any |ri| ≥ R .

(4)

There is no additional potential induced by the sphere, as mentioned before it is just a geometrical restriction and the

polymer can move freely inside it.

To distinguish the different pseudo-phases we use the thermal derivative of different observables, such as the energy

〈E〉, the squared radius of gyration
〈
R2

g

〉
, and the mean angle 1

N 〈
∑

i θi〉. Since in this work we are mainly interested in

the location of the collapse transition, we concentrate on the maximum of the thermal derivative of the squared radius

of gyration d
dT

〈
R2

g

〉
with R2

g =
∑N

i=1(�ri − �rcm)2/N =
∑N

i=1

∑N
j=1(�ri − �r j)

2/2N2 and �rcm =
∑N

i=1�ri/N.

3. Simulation method

To simulate this model we used a modified version of the multicanonical Monte Carlo algorithm, see Berg and

Neuhaus (1991, 1992) and Janke (2012). The multicanonical algorithm overcomes the problem of supercritical slow-

ing down at first-order phase transition, shown in Janke (1992, 2012), by constructing a weight function such that in

the resulting simulation the probability for every energy is equally distributed over the desired energy range. Therefore

the simulation spends an equal amount of time at every energy and acts as a random walker in the energy landscape

so it can sample also the very suppressed regions of the phase space reasonably well. We apply two modifications to

this algorithm. The first modification is that we make the update ranges of the Monte Carlo moves energy dependent,

such that the acceptance probability is roughly 2/3 at every energy bin. The details of this procedure are described in

Schnabel et al. (2011). Although this simulation technique copes with the most intrinsic problem of the Monte Carlo

method, the convergence procedure may need some time especially if one wants to simulate very low temperatures,
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Figure 1. Schematic description of the double-bridge move for polymers where the distance of adjacent monomers is fixed. First we choose two

random bonds (here AC and BD, delete these bonds and reconnect the polymer via new bonds (here AB and CD). Now the middle part of the

polymer (B to C) is moved so that B has now the old coordinates of C. Finally the end of the polymer, beginning with D, is shifted so that afterwards

the new bond CD has the same direction and length as the old bond CA. This move improves the dynamics of the simulation and still satisfies the

fixed bond-length constraint and the detailed balance condition.

which corresponds to very low energy values. To overcome this problem we used a parallel implementation, as de-

scribed by Zierenberg et al. (2012). This technique enables us to use modern HPC hardware and reduces drastically

the wall-clock time needed for the convergence procedure.

Due to the fixed distance of adjacent monomers we can only use a restricted set of Monte Carlo moves. We use a

spherical move, a crank-shaft move and a sort of double-bridging move. The first one rotates one bond of the polymer

with a random angle and afterwards shifts every monomer from this end of the polymer by a constant vector, such

that the fixed distance between adjacent monomers is conserved. The second one moves only a single monomer by

rotating it around the axis spanned by its two adjacent monomers by a random angle. The “double-bridge” move

exchanges two bonds of the polymer with each other in such a way that the fixed bond length is not violated, a

schematic description is shown in Fig. 1.

4. Results

4.1. Unconstrained behaviour

We first give a rough overview of the complete phase diagram of a semi-flexible bead-stick polymer without any

geometrical constraint. A detailed description will be given elsewhere, where we also compare with the case of a bead-

spring polymer, see Seaton et al. (2013). In the flexible case (κ = 0.00) it is well known that there are three basically

different pseudo-phases, see Fig. 2. At high temperatures the polymer is a random coil and entropy dominated (gas-

Figure 2. Specific heat (red) and thermal fluctuation of the radius of

gyration (green) for a flexible homopolymer with κ = 0.00 consisting

of 14 monomers. The peaks indicate pseudo-phase transitions, which

are labeled as follows: F1/F2 - frozen/solid phase, C - collapsed phase,

E - extended phase.

Figure 3. Overview of the phase diagram of a 14mer in the stiffness-

temperature plane. The phases are labeled as follows: E - extended

phase, C - collapsed phase, AC - aligned collapsed, F1/F2 - frozen,

K/K* - knot-like, DN - bended N-1 times, R/R* - rod-like. Note that

the temperature is given on a logarithmic scale.
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(a) κ = 0.00
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(b) κ = 1.00
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(c) κ = 2.00
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(d) κ = 3.00
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(e) κ = 4.00
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(f) κ = 6.00

Figure 4. All graphs show d
dT

〈
R2

g

〉
plotted versus the temperature of a homopolymer consisting of 14 monomers for different values of κ. The peak

corresponding to the collapse transition is indicated by a red arrow.

like), we denote this phase as E (extended). At lower temperatures, below the collapse transition, the polymer is in

a more dense but also disordered liquid-like state C (collapsed). The third phase F (frozen) is comparable to a solid

state, which is completely energy dominated and the intermolecular distances between the monomers are minimized.

Due to the mismatch of the minima of the Lennard-Jones potential and the fixed bond length, the polymer cannot

enter crystal-like shapes as seen for similar models where the bonds are allowed to change their lengths as shown in

Schnabel et al. (2009a, 2009b).

Turning on bending stiffness, we see a very rich phase diagram, shown in Fig. 3. In this work, we focus on the

collapse transition which distinguishes the extended from the collapsed or bended states (the red line in the phase

diagram). In contrast to most other pseudo-phase transitions, the collapse transition persists over a large range of κ
and its existence is also quite insensitive to the length of the polymer.

4.2. Spherical confinement

The plots in Fig. 4 give an overview of the influence of the confinement on the collapse transition and how it

depends on bending stiffness. One can see that the position and the height of the peak of d
dT

〈
R2

g

〉
shifts with changing

radius of the confining sphere. The height becomes smaller with smaller radius until it vanishes at a certain size

of the sphere. This is due to the fact that the sphere compresses the polymer, such that the conformations of the

extended and collapsed phase become more similar. This implies that the difference in
〈
R2

g

〉
becomes smaller and

thus the transition is less and less pronounced. At certain values for κ (2.00, 3.00 and 4.00) a second peak in d
dT

〈
R2

g

〉
emerges if the radius is small enough. This peak indicates another pseudo-phase transition which is not influenced

in the same way as the collapse transition by the confining sphere. For large radii the peak of d
dT

〈
R2

g

〉
coming from

the collapse transition overlaps this other pseudo-phase transition completely, but it is nonetheless existent and can be

observed with different estimators, where the collapse transition is less pronounced. The amplitude of the shift of the

collapse transition depends on the bending stiffness of the polymer. For small κ the transition temperature shifts to

lower values. This effect becomes smaller as we increase κ until the transition point stays stable (κ ≈ 2.00 − 3.00). If

we further increase κ the transition temperature starts to shift to higher temperatures.
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5. Conclusions

We have shown that for a very generic model of a homopolymer the introduction of a confining sphere can lead

to a stabilizing or destabilizing effect, depending on the bending stiffness of the polymer. This is not in contrast to

former work on chemically realistic protein models, due to the fact that proteins are relatively stiff polymers. In our

case, this is the regime where the transition shifts to higher temperatures.
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