Supporting Information

Gate Opening, Diffusion and Adsorption of CO₂ and N₂ Mixtures in ZIF-8

T. Chokbunpiam^{1*}, S. Fritzsche^{2,3}, C. Chmelik⁴, J. Caro⁵, W. Janke³ and S. Hannongbua²

 ¹Ramkhamhaeng University, of Chemistry, Faculty of Science, Bangkok 10240, Thailand
²Chulalongkorn University, Computational Chemistry Unit Cell (CCUC), Department of Chemistry, Faculty of Science, Bangkok 10330, Thailand
³University of Leipzig, Institute of Theoretical Physics, Faculty of Physics and Geosciences, Postfach 100920, Leipzig 04009, Germany
⁴University of Leipzig, Institute of Experimental Physics I, Faculty of Physics and Geosciences, Postfach 100920, Leipzig 04009, Germany
⁵Leibniz University Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstr.
3-3A, D-30167 Hannover, Germany

Corresponding Author T. Chokbunpiam

Radial distribution functions (RDF's)

Radial distribution functions (RDF's) between atoms in guest molecules with lattice atoms and other atoms in gueast molecules are shown in the following figures.

S1 The RDF of framework and guest between CC-C, CC-O and CC-N of mixture CO_2/N_2 when increasing loading.

S2 The RDF of framework and guest between CT-C, CT-O and CT-N of mixture CO_2/N_2 when increasing loading.

S3 The RDF between C-C, C-O and O-O of CO₂ in framework.

S4 The RDF between atoms belonging to different guest molecules in the mixture CO_2/N_2 in ZIF-8 for different loadings.

Loading concentration	D_s of mixture CO_2/N_2		$\alpha_{ij}^{diffusion}$
	CO ₂	N ₂	
1.25 (0.625 CO ₂ , 0.625 N ₂)	2.905E-10	3.357E-10	0.865
2.5 (1.25 CO ₂ , 1.25 N ₂)	3.361E-10	4.528E-10	0.742
5 (2.5CO ₂ , 2.5 N ₂)	2.9153E-10	3.544E-10	0.823
7.5 (3.25 CO ₂ , 3.25N ₂)	2.9045E-10	5.046E-10	0.576
10 (5 CO ₂ , 5 N ₂)	3.381E-10	6.059E-10	0.558
12.5 (6.25CO ₂ , 6.25N ₂)	3.733E-10	7.2907E-10	0.512
15 (7.5CO ₂ , 7.5N ₂)	7.391E-10	9.1E-10	0.812

Self diffusion coefficients and diffusion selectivities

Table S1: Self diffusion coefficient D_s values in m^2/s shown in Fig. 3 and resulting diffusion selectivities for different equimolar concentrations. The concentration is given in molecules per cage, the diffusivity in m^2/s .