
HISTOGRAMS AND ALL THAT
WOLFHARD JANKEInstitut f�ur Theoretishe Physik, Universit�at LeipzigAugustusplatz 10/11, D-04109 Leipzig, GermanyAbstrat. In this leture we �rst disuss \stati" single- and multiple-histogram reweighting methods and then move on to \dynami" updatingmethodologies related to histogramming. Spei�ally we will onsider themultianonial approah and tempering methods. The methods are illus-trated with appliations to systems exhibiting �rst-order phase transitionsand spin glasses.1. IntrodutionNumerial Monte Carlo simulations an be roughly divided into two parts:i) data generation and ii) data analyses. The two parts are, of ourse, notompletely independent, but interfere and inuene eah other. A typialexample for this mutual inuene are \stati" histogram reweighting meth-ods (data analysis tools) and \dynami" update methodologies based ongeneralized ensembles (data generation algorithms). Both types of algo-rithms are ompletely general whih makes them so useful and powerful.In this leture we will begin with a disussion of single- and multiplehistogram tehniques in Sets. 2 and 3, respetively. Setion 4 is devotedto the multianonial update proedure. The usefulness of this methodis demonstrated by appliations to �rst-order phase transitions and spinglasses. In Set. 5 related tempering methods are disussed, and in Set. 6a brief summary is given.2. Single-histogram tehniqueThe single-histogram reweighting tehnique [1℄ is based on the followingvery simple observation. If we denote the number of states (spin on�gura-tions) that have the same energy E by 
(E), the partition funtion at the



2simulation point �0 = 1=kBT0 an always be written as1Z(�0) =Xfsg e��0H(fsg) =XE 
(E)e��0E /XE P�0(E) ; (1)where we have introdued the unnormalized energy histogram (density)P�0(E) / 
(E)e��0E : (2)If we would normalize P�0(E) to unit area, the r.h.s. would have to bedivided byPE P�0(E) = Z(�0), but the normalization will be unimportantin what follows. Let us assume we have performed a Monte Carlo simulationat inverse temperature �0 and thus know P�0(E). It is then easy to see thatP�(E) / 
(E)e��E = 
(E)e��0Ee�(���0)E / P�0(E)e�(���0)E ; (3)i.e., the histogram at any point � an be derived, in priniple, by reweightingthe simulated histogram at �0 with the exponential fator exp[�(���0)E℄.Notie that in reweighted expetation values,hf(E)i(�) =XE f(E)P�(E)=XE P�(E) ; (4)the normalization of P�(E) indeed anels. This gives for instane theenergy hei(�) = hEi(�)=V and the spei� heat C(�) = �2V [he2i(�) �hei2(�)℄, in priniple, as a ontinuous funtion of � from a single MonteCarlo simulation at �0, where V = Ld is the system size.As an example of this reweighting proedure, using atual simulationdata for the two-dimensional (2D) Ising model at �0 = � = ln(1+p2)=2 =0:440 686 : : : on a 16�16 lattie with periodi boundary onditions, the spe-i� heat C(�) is shown in Fig. 1(a) and ompared with the urve obtainedfrom the exat Kaufman solution [2, 3℄ for �nite Lx � Ly latties. Thislearly demonstrates that, in pratie, the �-range over whih reweightingan be trusted is limited. The reason for this limitation are unavoidable sta-tistial errors in the numerial determination of P�0 using a Monte Carlosimulation. In the tails of the histograms the relative statistial errors arelargest, and the tails are exatly the regions that ontribute most when mul-tiplying P�0(E) with the exponential reweighting fator to obtain P�(E)for �'s far o� the simulation point �0. This is illustrated in Fig. 1(b) wherethe simulated histogram at �0 = � is shown together with the reweightedhistograms at � = 0:375 � �0 � 0:065 and � = 0:475 � �0 + 0:035, respe-tively. Here the quality of the histograms an be judged by omparing withthe urves obtained from Beale's [4℄ exat expression for 
(E).1For simpliity we onsider here only models with disrete energies. If the energy variesontinuously, sums have to be replaed by integrals, et. Also lattie size dependenesare suppressed to keep the notation short.
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(b)Figure 1. (a) The spei� heat of the 2D Ising model on a 16�16 square lattie omputedby reweighting from a single Monte Carlo simulation at �0 = �, marked by the �lleddata symbol. The ontinuous line shows for omparison the exat solution of Kaufman[2, 3℄. (b) The orresponding energy histogram at �0, and reweighted to � = 0:375 and� = 0:475. The dashed lines show for omparison the exat histograms obtained fromBeale's [4℄ expression.As a rule of thumb, the range over whih reweighting should produeaurate results an be estimated by requiring that the peak loation ofthe reweighted histogram should not exeed the energy value at whih theinput histogram had dereased to about one half or one third of its maxi-mum value. In most appliations this range is wide enough to loate froma single simulation, e.g., the spei�-heat maximum by employing stan-dard maximization routines to the ontinuous funtion C(�). This is by farmore onvenient, aurate and faster than the traditional way of perform-ing many simulations lose to the peak of C(�) and trying to determinethe maximum by spline or least-squares �ts.For an analytial estimate of the reweighting range we now require thatthe peak of the reweighted histogram is within the width hei(T0)��e(T0)of the input histogram (where a Gaussian histogram would have dereasedto exp(�1=2) � 0:61 of its the maximum value),jhei(T ) � hei(T0)j � �e(T0) ; (5)where we have made use of the fat that for a not too asymmetri histogramP�0(E) the maximum loation approximately oinides with hei(T0). Re-alling that the half width �e of a histogram is related to the spei� heatvia (�e)2 � h(e � hei)2i = he2i � hei2 = C(�0)=�20V and using the Taylorexpansion hei(T ) = hei(T0) + C(T0)(T � T0) + : : :, this an be written as



4C(T0)jT � T0j � T0pC(T0)=V orjT � T0jT0 � 1pV 1C(T0) : (6)Sine C(T0) is known from the input histogram this is quite a generalestimate of the reweighting range. If we only want to know the saling be-haviour with system size V = Ld, we an go one step further by onsideringthree generi ases:i) O�-ritial , where C(T0) � onst., suh thatjT � T0jT0 / V �1=2 = L�d=2 : (7)ii) Critial , where C(T0) ' a1 + a2L�=� , with a1 and a2 being onstants,and � and � denoting the standard ritial exponents of the spei�heat and orrelation length, respetively. For � > 0, the leading salingbehaviour beomes jT�T0j=T0 / L�d=2L��=2� . Assuming hypersaling(� = 2� d�) to be valid, this simpli�es tojT � T0jT0 / L�1=� ; (8)i.e., the typial saling behaviour of pseudo-transition temperatures inthe �nite-size saling regime of a seond-order phase transition [5℄. For� < 0, the leading saling behaviour is as in the o�-ritial ase.iii) First-order transitions, where C(T0) / V . This yieldsjT � T0jT0 / V �1 = L�d ; (9)whih is again the typial �nite-size saling behaviour of pseudo-tran-sition temperatures lose to a �rst-order phase transition [6℄.If we also want to reweight other quantities suh as the magnetizationhmi we have to go one step further. The oneptually simplest way would beto store two-dimensional histograms P�0(E;M) where M = V m is the to-tal magnetization. We ould then proeed in lose analogy to the preedingase, and even reweighting to non-zero magneti �eld h would be possible,whih enters via the Boltzmann fator exp(�hPi si) = exp(�hM). How-ever, the storage requirements may be quite high (of the order of V 2), and itis often preferable to proeed in the following way. For any funtion g(M),



5e.g., g(M) =Mk, we an writehg(M)i = Xfsg g(M(fsg))e��0H=Z(�0)= XE;M 
(E;M)g(M)e��0E=Z(�0)= XE PM g(M)
(E;M)PM 
(E;M) XM 
(E;M)e��0E=Z(�0) (10)= XE hhg(M)ii(E)
(E)e��0E=Z(�0)= XE hhg(M)ii(E)P�0 (E) ;where 
(E) =PM 
(E;M), andhhg(M)ii(E) = PM g(M)
(E;M)PM 
(E;M) (11)is the miroanonial expetation value of g(M) at �xed energy E, some-times denoted as a \list". Identifying hhMii(E) with f(E) in eq. (4), theatual reweighting proedure is preisely as before. Mixed quantities, e.g.hEkM li, an be treated similarly. One aveat of this method is that one hasto deide beforehand whih \lists" hhg(M)ii(E) one wants to store duringthe simulation, e.g., whih powers k in hhMkii(E) are relevant.An alternative and more exible method is based on time series. Sup-pose we have performed a Monte Carlo simulation at �0 and stored thetime series of N measurements E1; E2; : : : ; EN and M1;M2; : : : ;MN . Thenthe most general expetation values at another inverse temperature � ansimply be obtained fromhf(E;M)i = NXi=1 f(Ei;Mi)e�(���0)Ei= NXi=1 e�(���0)Ei ; (12)i.e., in partiular all moments hEkM li an be omputed. Notie that thisan also be written ashf(E;M)i = hf(E;M)e�(���0)Ei0=he�(���0)Ei0 ; (13)where the subsript 0 refers to expetation values taken at �0. Another veryimportant advantage of the last formulation is that it works without anysystemati disretization error also for ontinuously distributed energiesand magnetizations.



6 As nowadays hard-disk spae is no real limitation anymore, it is advis-able to store time series in any ase. This guarantees the greatest exibilityin the data analysis. As far as memory requirements of the atual reweight-ing ode is onerned, however, the method of hoie is sometimes not solear. Using diretly histograms and lists, one typially has to store about(6 � 8)V data, while working diretly with the time series one needs 2Nomputer words. The heaper solution (also in terms of CPU time) thusobviously depends on both, the system size V and the run length N . It ishene sometimes faster to generate from the time series �rst histograms andthe required lists and then proeed with reweighting the latter quantities.3. Multi-histogram tehniqueThe basi idea of the multi-histogram tehnique [7℄ an be summarized asfollows:i) Perform m Monte Carlo simulations at �1; �2; : : : ; �m with Ni, i =1; : : : ;m, measurements,ii) reweight all runs to a ommon referene point �0,iii) ombine at �0 all information by omputing error weighted averages,iv) reweight the \ombined histogram" to any other �.Here we shall assume that the histograms P�i(E) are \naturally" nor-malized, PE P�i(E) = Ni, suh that the statistial errors for eah of thehistograms P�i(E) are approximately given by qP�i(E). By hoosing asreferene point �0 = 0 and working out the error weighted ombined his-togram one ends up with
(E) = Pmi=1 P�i(E)Pmi=1NiZ(�i)�1e��iE ; (14)where the unknown partition funtion values Z(�i) are determined self-onsistently fromZ(�i) =XE 
(E)e��iE =XE e��iE Pmk=1 P�k(E)Pmk=1NkZ(�k)�1e��kE ; (15)up to an unimportant overall onstant. In order to work in pratie, thehistograms at neighbouring �-values must have suÆient overlap, i.e., thespaings of the simulation points must be hosen aording to the estimates(7)-(9).Multiple-histogram reweighting has been widely applied in many di�er-ent appliations. Some problems of this method are that autoorrelationsannot properly be taken into aount when omputing the error weighted



7average (whih is still orret but no longer optimized), the proedure foromputing mixed quantities suh as hEkM li is diÆult to justify (even so itdoes work as an \ad ho" presription quite well), and the statistial erroranalysis beomes quite umbersome.As an alternative one may ompute by reweighting from eah of them simulations all quantities of interest as a funtion of �, inluding theirstatistial error bars whih now also should take are of autoorrelations[8℄. In this way one obtains, at eah �-value, m estimates, e.g. e1(�) ��e1; e2(�)��e2; : : : ; em(�)��em, whih may be optimally ombined a-ording to their error bars to give e(�) � �e [9℄. Notie that in this waythe average for eah quantity is individually optimized.4. Multianonial simulationsBy applying multi-histogram reweighting to m anonial simulations at�1 < �2 < : : : < �m with overlapping histograms, the density of states
(E) an be determined (up to an overall onstant) roughly in the rangeE(�m) < E < E(�1). One 
(E) is known, anonial quantities an beomputed by standard reweighting. Reliable results an be expeted inthe range �1 < � < �m. Of ourse, sine the individual histogram widthsderease with inreasing system size [reall eqs. (7)-(9)℄, in the large volumelimit more and more simulation points are neessary to over the sameenergy range with overlapping histograms.Multianonial simulations [10, 11℄ may be interpreted as a methodof ahieving suh a ombined statistis over an extended energy range ina single simulation run, instead of pathing many independent anonialsimulations in the way desribed above. This interpretation is stressed bythe notation used in the original papers by Berg and Neuhaus [12, 13℄ andexplains the name \multianonial". At the same time, their method mayalso be viewed as a spei� realization of non-Boltzmann sampling whihhas been known sine long to be a legitimate alternative to the more stan-dard Monte Carlo approahes [14℄. In this formulation, the multianonialmethod appears as a non-standard reweighting approah [15℄, a view whihin most ases simpli�es the atual implementation.The pratial signi�ane of non-Boltzmann sampling was �rst demon-strated a long time ago by Torrie and Valleau [16℄ with what they alled\umbrella sampling". Most of the early appliations aimed at a reliableomputation of free energies whih an be obtained by anonial Boltz-mann sampling only indiretly via so-alled thermodynami integration [6℄.In the following years attention slowly shifted to the problems of rare-eventsampling and quasi-ergodiity [17℄, but it took many years before the de-velopment of the multianonial sheme [12, 13℄ turned non-Boltzmann



8sampling into a widely appreiated pratial tool in omputer simulationstudies. One the feasibility of suh generalized ensemble approah wasrealized, many related methods were developed.The multianonial method implements reweighting at the level of MonteCarlo updating the degrees of freedom. In this sense it may be alled a \dy-namial" appliation of histogram reweighting. Coneptually the methodan be divided into two main approahes. The �rst is based on \enhaningthe probability of rare event states", whih is the typial strategy for dealingwith the highly suppressed mixed-phase region of �rst-order phase transi-tions [6℄. This allows a diret study of properties of the rare event states,for example interfae tensions or more generally free energy barriers, whihwould be very diÆult (or pratially impossible) with anonial simula-tions and also with the tempering methods disussed below in Set. 5. Theseond approah an be best desribed by \avoiding rare events" whih isloser in spirit to the alternative methods. In this variant one tries to on-net the important parts of phase spae by \easy paths" whih go aroundthe suppressed rare event regions whih hene annot be studied diretly.In both approahes the anonial Boltzmann distributionPan(�) / exp(��H(�)) ; (16)is replaed by an auxiliary distributionPmua(�) / exp(��H(�) � f(fQi(�)g)) ; (17)where � denotes the degrees of freedom and W (fQig) � exp(�f(fQig))is a reweighting fator. With a suitably hosen W (fQig), the probabilitydistribution Pmua(fQig) of the marosopi variables fQig an be tunedto take any desired form. The Monte Carlo sampling of Pmua(�) proeedsin the usual way by omparing �H(�)+f(fQi(�)g) before and after a pro-posed update move of �. In most appliations loal update algorithms havebeen employed, but for ertain lasses of models also non-loal multigridmethods are appliable [18℄, whih an lead to real-time improvements ofthe performane by a fator of about ten [19℄. A ombination with non-loal luster update algorithms, on the other hand, is not straightforward.Only by making diret use of the random-luster representation as a start-ing point, a multibondi variant [20℄ has been proposed. Before disussingthe hoie of the variables fQig and of the reweighting fator W (fQig), itshould be emphasized that, whatever these hoies are, anonial expeta-tion values an always be reovered exatly by inverse reweighting,hOian = hOW�1(fQig)imua=hW�1(fQig)imua ; (18)similar to eq. (13). The performane of the simulation, of ourse, doesdepend ruially on the hoie of fQig and on the form ofW (fQig), sine for
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10anonial distribution the formal solution is exp(�f(fQig)) = Pan(fQig)�1.Of ourse, at the beginning the anonial probability distribution on ther.h.s. is not known and one has to proeed by iteration. Starting with theanonial weight, or some initial guess based on results for already simu-lated smaller systems together with �nite-size saling extrapolations, oneperforms a short simulation to get an improved estimate of the anonialdistribution. When this is inverted one obtains a new estimate of the mul-tianonial weight fator, whih then is used in the next iteration and soon. In this naive version only the simulation data of the last iteration areused in the onstrution of the improved weight fator.A more sophistiated reursion, in whih the new weight fator is om-puted from all available data aumulated so far, works as follows. Forsimpliity we shall onsider the ase Qi = E and de�ne R(E) = W (E +�E)=W (E) with W (E) = exp(�f(E)), but the method is ompletely gen-eral [30℄:1. Perform a simulation with Rn(E) to obtain the histogram Hn(E).2. Compute the statistial weight of the nth run:p(E) = Hn(E)Hn(E +�E)=[Hn(E) +Hn(E +�E)℄ : (19)3. Aumulate statistis:pn+1(E) = pn(E) + p(E) ; (20)�(E) = p(E)=pn+1(E) : (21)4. Update weight ratios:Rn+1(E) = Rn(E) [Hn(E)=Hn(E +�E)℄�(E) : (22)Goto 1.The reursion is initialized with p0(E) = 0. Due to the aumulated statis-tis, this proedure is rather insensitive to the length of the nth run in the�rst step.Another, possibly more eÆient method, works diretly with estima-tors 
(E) of the density of states [31, 32℄. By ipping spins randomly, thetransition probability from energy level E1 to E2 isp(E1 ! E2) = min�
(E1)
(E2) ; 1� : (23)Eah time an energy level is visited, the estimator is multipliatively up-dated, 
(E)! f 
(E) ; (24)



11where initially 
(E) = 1 and f = f0 = e1. One the aumulated energyhistogram is suÆiently at, the fator f is re�ned,fn+1 = pfn ; n = 0; 1; : : : ; (25)and the energy histogram reset to zero until some small value suh asf = e10�8 � 1:00000001 is reahed.For the 2D Ising model this proedure onverges very rapidly towardsthe exatly known density of states, and also for other appliations a fastonvergene has been reported. Sine the proedure is known to violatedetailed balane, however, same are is neessary of setting up a properprotool of the reursion. Most authors who employ the obtained den-sity of states diretly to extrat anonial expetation values by standardreweighting argue that, one f is lose enough to unity, systemati devi-ations beome negligible. While this laim an be veri�ed empirially forthe 2D Ising model (where exat results are available for judgement), it isdiÆult to aess in the general ase. A safe way would be to onsider thereursion (23)-(25) as an alternative method to determine the multianon-ial weights, and then to perform a usual multianonial simulation basedon them. As emphasized earlier, any deviations of multianonial weightsfrom their optimal shape do not show up in the �nal anonial expeta-tion values; they rather only inuene the dynamis of the multianonialsimulations.To summarize, multianonial simulations onsist of the following steps:1. Reursive onstrution of the weights W .2. A thermalization run with �xed weights.3. A prodution run with �xed weights, olleting measurements.4. Inverse reweighting (18) to extrat the desired anonial quantities.4.2. APPLICATIONSThe multianonial method is very general and an easily be adapted toa given problem. Consequently the appliations span basially the wholespetrum of omputational biologial, hemial, ondensed matter and highenergy physis. Instead of giving a list of key words, here we shall disussonly two prototype appliations whih illustrate the general proedure.4.2.1. First-Order Phase TransitionsThe �rst appliations of multianonial simulations onentrated on investi-gations of �rst-order phase transitions [6℄. Only later they were also appliedto omplex systems suh as spin glasses disussed below or proteins wherethe folding mehanism is in the fous of interest [33℄.
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Figure 3. Time evolution of magnetization measurements in (a) anonial and (b)multianonial simulations of the 2D �4 lattie model [19℄.Phase oexistene at a �rst-order phase transition is diretly relatedto the double peaked energy or magnetization density. The peaks are gov-erned by the pure phases and the dip in between is assoiated with the two-phase region ontaining interfaes. Compared with the peaks, the probabil-ity of two-phase on�gurations is exponentially suppressed by the additionalBoltzmann fator exp(�2��Ld�1), where � is the interfae tension [6℄. Ina anonial simulation, the time to pass this interfae region is inverselyproportional to its likelihood. This leads to the harateristi ip-op be-haviour shown in Fig. 3(a), where the average time spent in eah phasebetween the jumps is a measure for the autoorrelation time. With inreas-ing system size this implies exponentially growing autoorrelation times,� ' exp(2��Ld�1), a behaviour whih is often referred to as \superritialslowing down".As is illustrated in Fig. 2 for the energy and in Fig. 4 for the magneti-zation, in a typial appliation one tries to generate multianonial weightsthat render the resulting multianonial distribution Pmua at between thetwo peaks of the anonial distribution Pan. This amounts to enhaningthe low probabilities of the \rare-events" in the two-phase region. The leftand right tails are usually not of diret physial interest and are left unmod-
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Figure 4. Canonial and multianonial magnetization densities obtained in multimag-netial simulations of the 2D �4 lattie model on linear (left) and logarithmi (right)sales [19℄. Notie that in this example (�̂ � �� = 0:16577(73), L = 64) the two-phaseregion is suppressed by about ten orders of magnitude.i�ed in order to save omputing time. The distane between the two peaksapproximately sales with the volume V of the system. If Pmua was om-pletely at between the two anonial peaks and the Monte Carlo updatemoves would perform an ideal random walk, one would expet that afterV 2 loal updates the system has travelled on average a distane V in energyor magnetization. Sine one lattie sweep onsists of V loal updates, theautoorrelation time should sale in this idealized piture as � / V . Anexample for a multianonial time evolution is shown in Fig. 3(b).Numerial tests for various models with a �rst-order phase transitionhave shown that in pratie the data are at best onsistent with a behaviour� / V �, with � � 1. While for the temperature-driven transitions of 2DPotts models the multibondi variant seems to saturate the bound [20℄,employing loal update algorithms, typial �t results are � � 1:1�1:3, anddue to the limited auray of the data even a weak exponential growthannot really be exluded. In fat, at least for the �eld-driven �rst-ordertransition of the 2D Ising model, it is known [34, 35℄ that even for a perfetlyat multianonial distribution a \hidden" free energy nuleation barrierleads to an exponential growth of � , whih is, however, muh weaker thanin the orresponding anonial simulation.In any ase, due to signi�antly redued autoorrelation times, multi-anonial simulations give muh more aurate results in a given omputertime [8℄. The improved auray allowed, for instane, areful tests of �nite-size saling theories for �rst-order phase transitions [36, 37, 6℄, studies of theoexistene urve in Lennard-Jones uids [38℄, and preise estimations of in-terfae tensions using the relation �̂(L) � ��(L) = ln(Pmaxan =Pminan )=(2Ld�1)in ombination with �nite-size saling extrapolations [6℄.



144.2.2. 3D Ising Spin GlassAs a non-trivial example for appliations of multianonial simulations weshall now onsider the Edwards-Anderson [39℄ Ising (EAI) spin-glass modelwhose energy is de�ned as E = �Xhiki Jik sisk ; (26)where the lattie sum runs over all nearest-neighbour pairs of a d-dimen-sional (hyper-) ubi lattie of size V = Ld with periodi boundary on-ditions and the utuating spins si an take the values �1. The ouplingonstants Jik = �1 are quenhed, random variables taking positive andnegative signs, thereby leading to ompeting interations. This models thetwo basi ingredients neessary for spin-glass behaviour, namely random-ness and ompeting interations [40, 41, 42, 43, 44℄. As a onsequene of therandomly ompeting interations no single spin on�guration is uniquelyfavoured by all of the interations, giving rise to so-alled \frustration" anda rugged free-energy landsape with probable regions (free energy valleys)separated by rare-event states (free energy barriers), as skethed in Fig. 5.The analogue of the magnetization for ferromagnets is the Parisi orderparameter [45℄ de�ned as q = 1V VXi=1 s(1)i s(2)i ; (27)where the spin supersripts label two independent (real) replias for thesame realization of randomly hosen exhange oupling onstants J =fJikg. For given J the probability density of q is denoted by PJ (q) and ther-modynami expetation values by h: : :iJ . To get a better approximation ofthe in�nite system, one usually performs averages over many hundreds oreven thousands of (quenhed) disorder realizations denoted byP (q) = [PJ (q)℄av = 1#J XJ PJ (q) ; [h: : :iJ ℄av = 1#J XJ h: : :iJ ; (28)where #J (! 1) is the number of realizations onsidered. Below thefreezing temperature, in the in�nite-volume limit V !1, a non-vanishingpart of P (q) between its two delta-funtion peaks at �qmax haraterizesthe mean-�eld piture [45℄ of spin glasses, whereas in ferromagnets as wellas in the droplet piture [46℄ of spin glasses P (q) exhibits only the twodelta-funtion peaks. Most studies so far onsidered mainly the averagedquantities.For a better understanding of the free-energy barriers skethed in Fig. 5,the probability densities for individual realizations J play the entral role.
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Figure 5. Typial sketh of the rugged free-energy landsape of spin glasses with manyvalleys separated by rare-event barriers.It is, of ourse, impossible to get omplete ontrol over the full state spae,and to give a well-de�ned meaning to \system state" (the x-axis in Fig. 5),one has to onentrate on one or a few harateristi parameters. By hoos-ing the overlap q, this leads to multi-overlap simulations [47℄ with a totalweight Pmuq(fsg) / exp24�Xhiki Jik �s(1)i s(1)k + s(2)i s(2)k �+ SJ (q)35 ; (29)where the two replias are oupled by the multianonial weight WJ (q) =exp(SJ (q)). Ideally the weight should satisfy the onditionPmuqJ (q) = P anJ (q)WJ (q) = onst: ; (30)suh that the multi-overlap probability density PmuqJ (q) is ompletely atover the entire aessible range �1 � q � 1, as skethed in Fig. 6. Sine forspin glasses the shapes of P anJ (q) may be quite ompliated and stronglyvary from realization to realization, it is important to use for the weightdetermination an automated reursion proedure as desribed above.To judge the performane of the algorithm for the three-dimensional(3D) EAI spin-glass model, the autoorrelation times �muqJ were �tted tothe power-law ansatz [�muqJ ℄av =  V �, yielding � = 2:32(7) in the spin-glass phase [48℄. This learly deviates from the theoretial optimum � = 1one would expet for a random-walk behaviour between q = �1 and +1.
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Figure 6. Illustration of the relation between ideally at multi-overlap densities PmuqJ (q)(left) and anonial densities P anJ (q) (right) with ompliated shapes.Even an exponential behaviour ould hardly be exluded. In multianonialsimulations with at energy histograms a similarly large exponent of � =2:8(1) has been observed [49℄, suggesting that the projetion of the multi-dimensional state spae onto the q- or E-diretion hides important featuresof the free-energy landsape of the model. An example for this problemhas reently been disussed [34℄ in the muh simpler ase of �eld-driven�rst-order phase transitions in the 2D ferrromagneti Ising model wherethe e�et of a \hidden" nuleation barrier an be analyzed analytially[35℄. Numerial simulations [34℄ niely on�rmed the theoretially preditedbehaviour.Large-sale multi-overlap simulations of the 3D EAI model led to a va-riety of new insights, for instane about the self-averaging properties of freeenergy barriers [48℄. The improvements beome partiularly pronouned inthe tails of the distributions, as is demonstrated in Fig. 7. The saling plotof P 0(q) = �P (q) versus q0 = q=�, where � / L��=� with �=� = 0:230(4)(T = 1) and �=� = 0:312(4) (T = 1:14), respetively, yields at the freezingtemperature T = 1:14 reliable results over more than 150 orders of magni-tude. This allowed us to verify a onjetured relation between the overlapprobability density and extreme-order statistis over about 80 orders ofmagnitude [50℄. A similar study for the 3D Ising model, on the other hand,revealed a ompletely di�erent behaviour [51℄.5. Tempering methodsLoosely speaking, tempering methods may be haraterized as \dynami-al multi-histogramming". Similarly to the stati reweighting approah, in\simulated" as well as in \parallel" tempering one onsiders m simulationpoints �1 < �2 < : : : < �m whih here, however, are ombined already



17
−1.0 −0.5 0.0 0.5 1.0

q

0.0

0.5

1.0

P
(q

)

 12
   8
   6
   4

T = 1

L

-400

-350

-300

-250

-200

-150

-100

-50

0

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

ln
[P

’(q
’)]

q’

T=1 T=1.14L=4
L=6
L=8

L=12
L=16
EOS

Deviation

Figure 7. Left: Overlap probability densities for the 3D EAI model in the spin-glassphase. Right: Resaled densities in omparison with a predition of extreme-order statis-tis (EOS) [50℄.during the simulation in a spei�, dynamial way.5.1. SIMULATED TEMPERINGIn simulated tempering simulations [52, 53℄ one starts from a joint partitionfuntion (expanded ensemble)ZST = mXi=1 egiXfsg e��iH(fsg) ; (31)where gi = �if(�i) and the inverse temperature � is treated as an addi-tional dynamial degree of freedom that an take the values �1; : : : ; �m.Employing a Metropolis algorithm, a proposed move from � = �i to �jtakes plae with probability min [1; exp[�(�j � �i)H(fsg)℄ + gj � gi℄. Simi-lar to multi-histogram reweighting (and also to multianonial simulations),the free-energy parameters gi are a priori unknown and have to be ad-justed iteratively. To assure a reasonable aeptane rate for the �-updatemoves (usually between neighbouring �i-values), the histograms at �i and�i+1, i = 1; : : : ;m � 1, must overlap. An estimate for a suitable spaingÆ� = �i+1 � �i of the simulation points �i is hene immediately given bythe results (7)-(9) for the reweighting range,Æ� / 8><>: L�d=2 o�-ritial ;L�1=� ritial ;L�d �rst-order : (32)Overall the simulated tempering method shows some similarities to the\avoiding rare events" variant of multianonial simulations.



185.2. PARALLEL TEMPERINGIn parallel tempering (exhange Monte Carlo, multiple Markov hain MonteCarlo) simulations [54, 55℄ the starting point is the produt of partitionfuntions (extended ensemble),ZPT = mYi=1Z(�i) = mYi=1Xfsgi e��iH(fsgi) ; (33)and all m systems at di�erent simulation points �1 < �2 < : : : < �m aresimulated in parallel, using any legitimate update algorithm (Metropolis,luster,. . . ). After a ertain number of sweeps, exhanges of the urrenton�gurations fsgi and fsgj are attempted (equivalently, the �i may beexhanged, as is done in most implementations). Aording to a Metropolisriterion the proposed exhange will be aepted with probability W =min(1; e�), where � = (�j��i)[E(fsgj)�E(fsgi)℄. To assure a reasonableaeptane rate, usually only \nearest-neighbour" exhanges (j = i�1) areattempted and the �i should again be spaed with the Æ� given in (32).In most appliations, the smallest inverse temperature �1 is hosen in thehigh-temperature phase where the autoorrelation time is expeted to bevery short and the system rapidly deorrelates. Coneptually this approahfollows again the \avoiding rare events" strategy.Notie that in parallel tempering no free-energy parameters must beadjusted. The method is thus very exible and moreover an be almosttrivially parallelized.6. SummaryHistogram reweighting tehniques have proven to be a very useful tool inMonte Carlo data analyses. Their formulation is very general and henethey are appliable to a wide range of problems. Multianonial and temper-ing methods may be viewed as dynamial versions of the multi-histogrammethod, in whih many anonial simulations are ombined in a singlesimulation run. In simulations of �rst-order phase transitions and omplexsystems suh as spin glasses they have led to enormous improvements. Still,in partiular in the latter systems some features of the methods are not yetwell understood, whih leaves room for further improvements in the future.AknowledgmentsThis work was in part supported by the EC IHP network \EUROGRID:Disrete Random Geometries: From Solid State Physis to Quantum Grav-ity under ontrat No. HPRN-CT-1999-000161 and the German-Israel-Foundation under ontrat No. I-653-181.14/1999.
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