
FIRST-ORDER PHASE TRANSITIONS
WOLFHARD JANKEInstitut f�ur Theoretishe Physik, Universit�at LeipzigAugustusplatz 10/11, D-04109 Leipzig, GermanyAbstrat. The leture starts with an overview of some of the mostimportant properties of �rst-order phase transitions and their distintivefeatures ompared with seond-order transitions. Then speial emphasiswill be plaed on the �nite-size saling behaviour of �rst-order phase tran-sitions, whih is essential for analyzing and interpreting numerial dataobtained in omputer simulations.1. OverviewAording to Ehrenfest's lassi�ation sheme, phase transitions may belassi�ed as �rst-, seond-, or higher-order transitions, depending on whetherthe �rst, seond, or higher temperature derivative of the free energy be-omes singular at the transition point [1℄. Even though seond-order phasetransitions [2℄ and the assoiated ritial phenomena have prompted a hugeamount of experimental, theoretial and numerial ativities over the lastthirty years, the vast majority of phase transitions in nature is of �rst order[3, 4, 5, 6℄. Examples over many �elds of physis and energy sales, rangingfrom simple and well studied phenomena suh as �eld-driven transitions inmagnets and temperature-driven melting of solid matter and various stru-tural transitions in liquid rystals over the deon�ning transition in hotquark-gluon matter to the muh less understood transitions in the evolu-tion of the early universe.The most harateristi properties of �rst- and seond-order phase tran-sitions are skethed in Fig. 1. As is high-lighted there, the distintive fea-tures of �rst-order phase transitions are phase oexistene and metastabil-ity, being reeted by jumps in the energy or magnetization and hysteresise�ets upon heating or ooling the system or hanging the magneti �elddiretion. At the transition temperature T0 the orrelation length � in theoexisting phases stays �nite. This is in sharp ontrast to a seond-orderphase transition where � diverges at the ritial temperature T. The loss of



2an intrinsi length sale at T gives rise to ritial phenomena and power-lawsingularities in thermodynami funtions governed by universal ritial ex-ponents �, �, , . . . [2℄. For �rst-order phase transitions, on the other hand,due to the �nite orrelation length no suh universal power-law divergenesan our in response funtions suh as the spei� heat C or magnetisuseptibility �. Still, in large but �nite systems, narrow peaks of C and� are observed, whih are remnants of the formal Æ-funtion singularitiesemerging when di�erentiating the disontinuous energy and magnetizationin the in�nite-volume limit; f. Fig. 1. Quite similar to a seond-order phasetransition, the loation, width and height of these peaks sale in a har-ateristi way with the size of the system whose preise desription is thesubjet of �nite-size saling (FSS) theory.�rst order seond order
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Figure 2. Energy time-series showing pronouned ips between the ordered and disor-dered phase. The data are taken from simulations of the three-state Potts antiferromag-neti model on a triangular lattie (3PAFT) [7℄, whih exhibits a weak �rst-order phasetransition.When studying �rst-order phase transitions with Monte Carlo omputersimulations it is straightforward to monitor the (pseudo-) time evolution ofthe system and to measure energy and magnetization densities. Close to T0,metastability is reeted in the time evolution of a anonial simulation byips between the two (or more) oexisting phases. For an illustration, takenfrom Monte Carlo simulations of the three-state Potts antiferromagnetimodel on a triangular lattie (3PAFT) [7℄, see Fig. 2.This gives rise to double-peaked energy or magnetization histograms,where the peaks represent the pure phases. A typial example is shownin Fig. 3. The dip between the two peaks is assoiated with the ips be-tween the two phases whih proeed via mixed phase on�gurations on-taining interfaes. If we apply periodi boundary onditions, there are fortopologial reasons always (at least) two interfaes osting additional en-ergy parametrized by an interfae tension �. For a ubi system of size Ldthis extra ontribution to the free energy leads to a suppression of mixedphase on�gurations by an additional ontribution to the Boltzmann fa-tor / exp(�2��Ld�1), where � / 1=T is the inverse temperature, what
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Eo Ecut EdFigure 3. Canonial energy density of the 2D 10-state Potts model for a 50� 50 lattieon a logarithmi sale reweighted to �eqh;L where the two peaks are of equal height.explains the dip in the energy or magnetization density.Sine the magnitude of the dips in the probability densities sales expo-nentially with the size of the system, the dynamis in a anonial ensembleis tremendously slowed down. In the time series of Fig. 2 this is reetedby the inreasing time the systems spends in the pure phases when the sys-tem size beomes larger. More formally the average time between ips (or,equivalently, the frequeny of ips) sets an intrinsi time sale of the system,the autoorrelation time, whih for anonial simulations grows exponen-tially with the system size { a severe problem in numerial simulations thatwill only be touhed on in this leture.Rather, we will start out in the next setion with a brief aount ofhysteresis e�ets and the method of thermodynami integration and thenfous mainly on thermodynami equilibrium properties of the transition.The main body of this leture is olleted in Set. 3, where the �nite-sizesaling behaviour at �rst-order transitions and its exploitation in analyses ofomputer simulations will be desribed. Setion 4 is devoted to numerialomputations of interfae tensions, and in Set. 5 we lose with a briefsummary.2. Hysteresis e�ets and thermodynami integrationIn numerial simulations one neessarily onsiders �nite systems. As a on-sequene no sharp jumps or singularities an develop. If the simulationtime is large enough (i.e., muh larger than the intrinsi time sale setby the autoorrelation time), equilibrium properties an be studied. At�rst-order phase transitions, however, the intrinsi autoorrelation timesan be huge already for relatively small systems and, when heating or



5ooling the system too fast, hysteresis e�ets may be observed. This phe-nomenon is illustrated in Fig. 4(a) for the two-dimensional 10-state Pottsmodel on a 50 � 50 square lattie. Shown are heating and ooling runsbetween � = 1=kBT = 1 and 2 in 100 steps of �� = 0:01, employing asingle-hit Metropolis algorithm. For eah �, 50 sweeps through the lattiewere performed for a (very) short equilibration and another 500 sweeps formeasuring and averaging the energy and other quantities (eah run takesabout 1 minute on a 733 MHz Pentium III). When heating up the system(� = 2! 1), it follows the low-temperature branh and slightly overheats,while when ooling down (� = 1 ! 2) it follow the high-temperaturebranh and we observe a somewhat more pronouned underooling. Whenplotted together, this results in a lear hysteresis loop. By inreasing thenumber of sweeps per �, the hysteresis loop would shrink in size and even-tually one would approah the equilibrium urve. The vertial dotted lineshows the exatly known loation of the in�nite-volume transition point�0 = ln(1 +p10) = 1:426 062 439 : : : and the values of the energies in theordered (Eo=V = �1:664 253 : : :) and disordered (Ed=V = �0:968 203 : : :)phase, implying a latent heat of �E=V = 0:696 050 : : :. For omparison, wehave also plotted low- and (dual) high-temperature series expansions upto order 31 whih an be generated from the information given in Ref. [8℄(for this plot, the series were simply summed up; for a more re�ned seriesanalysis using partial di�erential approximants, see Ref. [8℄).While suh a plot learly indiates a phase transition around � = 1:4�1:5, its preise loation would be diÆult to read o� from Fig. 4(a). A nieimprovement is ahieved by employing so-alled thermodynami integrationto obtain the assoiated free energies of the low- and high-temperaturebranhes (at least with onventional Monte Carlo simulation tehniques,free energies annot be obtained diretly). Sine the stable phase has thelower free energy, one an estimate the loation of the phase transitionby the rossing point of the two free-energy branhes. More preisely, byrealling the relation E = d�F=d�, one omputes for example for the high-temperature branh Z ��1 d�0E(�0) = �F (�) � �1F (�1); (1)where the integral is approximated by summing up the measured energies.The integration onstant �xing the overall normalization of the free energyis an additional input and has to be determined by some other means. Inmany ases this an be obtained by low-order series expansions, as wasdone here. By omputing the low-temperature branh of the free energy inan analogous way, we arrive at the plot shown in Fig. 4(b), where the meta-stable part of the free-energy branhes is indiated by the dashed lines. We
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(b)Figure 4. (a) Hysteresis loop in Monte Carlo simulations of the 2D 10-state Potts modelon a 50 � 50 lattie. The heating and ooling protools are desribed in the text. Thedotted vertial line indiates the in�nite-volume transition point and latent heat. Thedashed urves show low- and (dual) high-temperature series expansions up to order 31. (b)The assoiated free energy obtained from the Monte Carlo data in (a) by thermodynamiintegration.see that the rossing point of the two free-energy branhes agrees very wellwith the in�nite-volume transition point �0, with an auray of about 1%.The usp at �0 in Fig. 4(b) orresponds to the latent heat in Fig. 4(a).3. Finite-size salingAs pointed out already in the last setion, in �nite systems the number ofdegrees of freedom is �nite and no sharp singularities an develop. Conse-quently, for instane the jump of the energy in a temperature-driven �rst-order phase transition is replaed in an equilibrated system by a smoothrossover, and the Æ-funtion like divergene of the spei� heat by a slightly



7displaed peak of �nite width. As we shall argue below, the height of thepeak sales with the volume V of the system and the width and displae-ment both derease proportional to 1=V , suh that the integral over thepeak is of order unity for all system sizes, as for a Æ-funtion. Investigationsof the �nite-size saling behaviour of �rst-order phase transitions started inthe early eighties with work by Imry [9℄, Binder [10℄, and Fisher and Berker[11℄. Subsequently many details were worked out [12, 13, 14, 15, 16, 17℄,and in the early nineties rigorous results for periodi boundary onditionsould be derived [18, 19, 20℄, whih is the simplest and best studied aseof lassial lattie systems. More reently also surfae e�ets have beenanalyzed analytially [21, 22℄ and numerially [23℄.3.1. SOME MODEL SYSTEMSWhile most of the following arguments are quite general, to be spei� weshall onentrate on one prototype model, namely the q-state Potts modelwith partition funtionZ = Xfsig exp(��H); H = �JXhiji Æsisj ; si = 1; : : : ; q; (2)where � is the inverse temperature in natural units, J > 0 is a ferromagnetioupling onstant and the sum runs over all nearest-neighbour pairs hijiof a D-dimensional lattie whih we shall take to be either square or ubisubjet to periodi boundary onditions.In two dimensions (2D) many exat results are known for this modelin the in�nite-volume limit [24℄. First of all it is self-dual, meaning thatequivalent properties are found at low and high inverse temperatures �and ��, provided they are related by [exp(�)�1℄[exp(��)�1℄ = q. As fun-tion of temperature, self-duality predits (by assuming a unique transitionand equating � and ��) a phase transition at �0 � J=kBT0 = ln(1 + pq)from an ordered low-temperature to a disordered high-temperature phase,whih is known to be of seond order for q � 4 and of �rst order forq � 5. Right at the �rst-order transition point the average energy fol-lows from self-duality as (êo + êd)=2 = �(1 + 1=pq), where êo � eo(�0)et., and also the latent heat is known exatly [25℄, �ê � êd � êo =2(1 + 1=pq) tanh(�=2)Q1n=1 tanh2(n�), where 2 osh(�) = pq. Hene theenergies at the transition are exatly known both in the oexisting disor-dered and ordered phases. For the spei� heat, self-duality implies an exatexpression for �C = Ĉd � Ĉo = �20�ê=pq, but the average and thus thevalues of Ĉd and Ĉo are not known analytially. Also exatly known is theorrelation length in the disordered phase at the transition point [26, 27, 28℄,�d(�0), and the (redued) order-disorder interfaial tension whih an berelated to this orrelation length [29℄, �̂od � �0�od = 1=2�d(�0).
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Figure 5. FSS behaviour of the traditional observables, spei� heat C and Binderparameter B, for the 2D 8-state Potts model. The in�nite-volume transition temperatureis T0 = 1= ln(1 +p8) = 0:744 904 455 : : :.In three dimensions (3D) no exat results are available, but numerialevidene strongly suggests that the transition is of �rst order for q � 3 (withthe preise rossover point to a seond-order transition loated somewherebetween q = 2 and 3) [30℄.3.2. FINITE-SIZE SCALING OF STANDARD OBSERVABLESThe traditional way of loating �rst-order transition points is based onthe saling behaviour of the maximum of the spei� heat C(�; V ) =�2V (he2i � hei2) and the minimum of the Binder parameter B(�; V ) =1�he4i=3he2i2. For an illustration see Fig. 5 where data for the 2D 8-statePotts model are shown. In both plots we see that the peaks of C and thewells of B are shifted and beome narrower with inreasing system sizeV = L2. If the volume is ubi or nearly ubi the loation of the extremais typially displaed by an amount O(V �1) with respet to the atualin�nite-volume transition point and one may try to estimate �0 from the�nite-volume results by extrapolations in 1=V . And for the spei� heatwe an already guess from Fig. 5 that the peak height indeed inreasesproportional to the volume.What is the reason for this behaviour? In the following we shall givethree arguments of inreasing omplexity and, at the same time, inreasingrigor. In fat, at least for Potts models with suÆiently large q, the �nalargument based on Pirogov-Sinai theory is a rigorous statement.3.2.1. Histogram argumentThis is the most straightforward way to see that the maximum of thespei�-heat peak should sale proportional to the volume of the system.



9Aepting that, due to phase oexistene, the energy density exhibits adouble-peak struture with the two peaks approximately separated by adistane V�ê, where �ê is the non-vanishing (in�nite volume) latent heatof the transition, one simply estimates the leading ontribution to the vari-ane �2E = h(E � hEi)2i � (V�ê=2)2 from the (squared) half-width of thedouble peak, that is the separation of the two peaks. For the spei� heatC = �2V (he2i � hei2) = �2V h(e � hei)2i = �2h(E � hEi)2i=V this impliesC � (��ê=2)2V whih, with � � �0, is indeed the orret asymptoti FSSbehaviour, inluding the prefator, as will be shown below more rigorously.This explains in the most diret and simplest way how phase oexisteneand a non-vanishing latent heat are related to the saling behaviour C / Vof the spei� heat.3.2.2. Tunneling argumentThe leading terms an be derived in somewhat more detail by onsideringa simple two-state model where one assumes that the system spends afration Wo of the total time in the ordered phases with energy eo and afration Wd = 1�Wo in the disordered phase with energy ed. Within thissimple piture the ips from one state to the other are approximated bysharp jumps and all utuations within the phases are negleted. Energymoments an then be expressed as heni =Woeno + (1�Wo)end , and for thespei� heat we �ndC = V �2(he2i � hei2) = V �2Wo(1�Wo)�e2: (3)It is now easy to derive that C has a maximumCmax = V �20 (�ê=2)2 (4)for Wo =Wd = 1=2, i.e., for an energy distribution with two peaks of equalweight. Here we have de�ned �ê � êd � êo. The peak loation�Cmax = �0 � ln q=V�ê+ : : : (5)follows from the expansion ln(Wo=Wd) = ln q+V �(fd�fo) = ln q+V�ê(���0)+: : : and equating this to ln(Wo=Wd) = ln 1 = 0. Similarly, the minimumof the Binder parameter,Bmin = 1� (êo=êd + êd=êo)2=12; (6)is found at a weight ratio Wo=Wd = ê2d=ê2o < 1, implying�Bmin = �0 � ln(qê2o=ê2d)=V�ê+ : : : : (7)



10 This simple argument thus not only explains the qualitative asymptotibehaviour as a funtion of the system size V , but also predits the prefatorsexpressed in term of êo, êd, �0, and q.3.2.3. Pirogov-Sinai argumentLet us �nally reapitulate a rigorous derivation [18, 19℄ whih is based onthe observation that the partition funtion of a model suh as (2), desribingthe oexistene of one disordered and q ordered phases, an be written forlarge enough q asZper(�; V ) =  qXm=0 e��V fm(�)!h1 +O �V e�L=L0�i ; (8)where the subsript \per" indiates that here and in the following we shallalways assume periodi boundary onditions. This should be emphasizedbeause the hoie of boundary onditions is very ruial in the presentontext. The free energy densities fm(�), m = 0; : : : ; q, are de�ned asmeta-stable quantities in suh a way that they are equal to the idealizedin�nite-volume free energy density f(�) if m is stable and stritly largerthan f(�) if m is unstable [18, 19℄. The onstant L0 < 1 governing theexponentially small orretion term in (8) is of the order of the (largest,but �nite) orrelation length at �0.Taking into aount that the q ordered phases are equivalent by sym-metry and negleting for the moment the exponentially small orretionsthis an be rewritten asZper(�; V ) ' e��V fd + qe��V fo= 2pqe��V (fd+fo)=2 osh��V fd � fo2 + 12 ln q� ; (9)where fd(�) � f0(�) and fo(�) � fm(�), m = 1; : : : ; q, denote the in�nite-volume free energy densities of the pure disordered and ordered phases, re-spetively. Notie that exponentially small �nite-size orretions of the purephase quantities are already ontained in the error term of eq. (8). From (9)it is easy to derive formulas for the energy e(�; V ) = �d lnZper(�; V )=d�,e(�; V ) = ed + eo2 � ed � eo2 tanh��V fd � fo2 + 12 ln q� ; (10)and spei� heat C(�; V ) = ��2de(�; V )=d�,C(�; V ) = Cd + Co2 � Cd �Co2 tanh��V fd � fo2 + 12 ln q�+ �2V �ed � eo2 �2 osh�2 ��V fd � fo2 + 12 ln q� ; (11)



11where all quantities are evaluated at inverse temperature �. For �xed � < �0(� > �0) we have fd < fo (fo < fd), suh that in the in�nite-volume limitV !1 the hyperboli tangent approahes �1 (+1) and the hyperboli o-sine tends to in�nity. The asymptoti limits of eqs. (10) and (11) are henee(�; V )! ed(�) (eo(�)) and C(�; V )! Cd(�) (Co(�)), respetively, as ex-peted on physial grounds. The range of the smooth interpolation betweenthe ordered and disordered phase is governed by the saling variablex = �V fd � fo2 + 12 ln q = V êd � êo2 (� � �0) + 12 ln q + : : : ; (12)showing that the rounding of the transition takes plae over a range �� =j� � �0j / 1=V .Right at the in�nite-volume transition point �0, we have phase oex-istene and the two free energies are equal, fd(�0) = fo(�0). Insertingtanh(12 ln q) = (q � 1)=(q + 1) and osh�2(12 ln q) = 1 � tanh2(12 ln q) =4q=(q + 1)2, we obtain e(�0; V ) = qêo + êdq + 1 ; (13)and C(�0; V ) = qĈo + Ĉdq + 1 + 4q(q + 1)2 V ��ŝ2 �2 ; (14)where we have introdued the transition entropy�ŝ = �0�ê; �ê = êd � êo > 0; (15)and denoted quantities evaluated at �0 by a \hat", e.g. êd = ed(�0). Notiethat apart from the negleted exponential orretions indiated in (8) theformulas for e(�0; V ) and C(�0; V ) are exat. In partiular we see thate(�0; V ) has only exponentially small �nite-size orretions. This impliesthat the energy urves for di�erent lattie sizes should ross to a very goodapproximation in the point (�0; (qêo + êd)=(q + 1)). Turning the argumentaround this implies that using the rossing points of the energy for di�erentlattie sizes as a de�nition for a pseudo transition point, these points shoulddeviate from �0 by only an exponentially small amount. We shall ome bakto this de�nition with a slightly di�erent argumentation.At the point �eqw where the two phases ontribute with equal weight,we have e��V fd(�) = qe��V fo(�) suh that x = �V fd�fo2 + 12 ln q = 0, andeqs. (10) and (11) immediately simplify to eeqw = e(�eqw; V ) = (ed + eo)=2and Ceqw = C(�eqw; V ) = (Cd + Co)=2 + �2eqwV (�e=2)2, where ed, eo,et. are evaluated at �eqw. By inserting Taylor expansions around �0, e.g.�fd(�) = �0f̂d + êd(� � �0)� Ĉd(� � �0)2=2�20 + : : :, and solving for x = 0



12one obtains [31℄�eqw = �0 � �0V�ŝ ln q + �0(V�ŝ)2 �Ĉ2�ŝ(ln q)2 +O(1=V 3); (16)and Ceqw = V ��ŝ2 �2 + (�Ĉ ��ŝ) ln q2 + Ĉd + Ĉo2 +O(1=V ); (17)with �Ĉ = Ĉd � Ĉo. Similarly straightforward but rather tedious alula-tions yield the asymptoti 1=V expansions of the spei�-heat maximum,Binder parameter minimum et. For the loation of the spei�-heat max-imum one �nds [31, 32℄�Cmax = �0 � �0V�ŝ ln q + �0(V�ŝ)2 "�Ĉ2�ŝ �(ln q)2 � 12�+ 4#+ a3=V 3 + a4=V 4 +O(1=V 5); (18)and Cmax = V ��ŝ2 �2 + (�Ĉ ��ŝ) ln q2 + Ĉd + Ĉo2 +O(1=V ) (19)= Ceqw +O(1=V ):Notie that �Cmax = �eqw + O(1=V 2) 2D Potts> �eqw and Cmax = Ceqw +O(1=V )(> Ceqw by de�nition). In the asymptoti expansion (18) also thehigher-order orretion terms / 1=V 3 and / 1=V 4 are indiated whihboth have also been alulated expliitly [33℄. As they turn out to be ratherompliated, however, here we only givea3 = �0�ŝ3 "8 Ĉd + Ĉo�ŝ � 4�(3)d + �(3)o�ŝ +  4� 8�Ĉ�ŝ ! ln q 16 �(3)d � �(3)o�ŝ � 12 �Ĉ2�ŝ2 !�(ln q)3 � 36 ln q�# : (20)As a new feature also the higher umulants �(3)d and �(3)o enter as parameters(as well as �(4)d and �(4)o in a4, and so on) whih are de�ned through theTaylor expansion of the free energy around �0, e.g.,��fd(�) = ��0fd(�0) +Xn=1(�1)n�(n)d (�=�0 � 1)n=n!: (21)



13For low orders, speial ases are �(1)d = �0ed(�0), �(2)d = d(�0), and�(3)d = �30h(E�hEid)3id=V . Reall, that from n = 4 on the relation betweenumulants �n � V �(n)d and entral moments �n = V �(n)d = h(E � hEid)niis more ompliated, e.g., �4 = �4 � 3�22, �5 = �5 � 10�2�3, �6 = �6 �15�2�4 � 10�23 + 30�32; : : :.Similar asymptoti expansions an be derived for quantities related tothe Binder parameter minimum [31, 32℄, on�rming the leading-order re-sults (6) and (7) obtained with the tunneling argument. For a omparisonwith simulation data see Fig. 6.3.2.4. Double-Gaussian approximationEarly work on FSS of �rst-order phase transitions foused diretly on thedouble-peak of the energy density and employed a double-Gaussian ap-proximation to it [13, 14, 15℄. In light of the preeding exat treatment theproperly normalized ansatz1 parametrized by the in�nite-volume energyed;o(�) and spei� heat d;o(�)in the pure phases would read,P�;V (e) = e��V fds �2V2�Cd e��2V (e�ed)22Cd + qe��V fos �2V2�Co e��2V (e�eo)22Co (22)= A " AdpCd e��2V (e�ed)22Cd + q AopCo e��2V (e�eo)22Co # (23)= e��V fds�2V2� " 1pCd e��2V (e�ed)22Cd + ~qpCo e��2V (e�eo))22Co # ; (24)where A = e��V (fd+fo)=2p�2V=2�, Ad = e��V�f and Ao = e+�V�f with�f = fd�fo, and ~q = qe�V (fd�fo) = e2x, where x = 12 ln q+ 12�V (fd�fo) isthe saling variable introdued earlier in (12). Sine eah Gaussian peak inthe representation (22) is normalized to unit area, by integrating P�;V (e)one reovers Zper(�; V ) of (8). Within the double-Gaussian approximationone then proeeds by alulating the energy moments asheni = Z 1�1 de enP�;V (e)= Z 1�1 P�;V (e): (25)This gives hei = (ed + ~qeo)=(1 + ~q), he2i = (e2d + ~qe2o)=(1 + ~q) + (Cd +~qCo)=[V �2(1+ ~q)℄, and C = �2V (he2i�hei2) = �2V (~q=(1+ ~q)2)(ed�eo)2+(Cd + ~qCo)=(1 + ~q), whih may be reast into the formhei = (~q�1=2ed + ~q1=2eo)(~q�1=2 + ~q1=2)1In the original papers the di�erent assumption P�;V (eo)=P�;V (ed) = q was made,leading to di�erent preditions for higher powers in 1=V of the FSS behaviour.
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22 TABLE 1. Comparison of analytial and numerial results for the or-der-disorder interfae tension 2�̂od in 2D q-state Potts models.q �d 2�̂od (exat) 2�̂od (MC)7 48.095907 0.020792 0.0241(10) Janke et al. [42℄0.02348(38) Rummukainen [43℄0.0228(24) Grossmann and Gupta [44℄8 23.878204 0.041879 0.045 Janke [31℄10 10.559519 0.094701 0.09781(75) Berg and Neuhaus [41℄0.10 Janke [31℄0.0950(5) Billoire et al. [46℄0.09498(31) at �0, Janke [40℄0.09434(40) at �W (L), Janke [40℄15 4.180954 0.239179 0.263(9) Gupta [47℄20 2.695502 0.370988 0.3714(13) Billoire et al. [46℄that it atually also holds for all q � 5. So, stritly speaking, (36) is exatfor all q > q0, while for q � q0 the r.h.s. of (36) is an exat upper boundon 2�̂od. Overall the numerial and analytial values in Table 1 are in goodagreement, but noteworthy is the systemati trend of the numerial dataobtained with the equal-peak-height method to overestimate the analytialvalues, whih are atually exat upper bounds.As a double-hek, the formula (36) for the orrelation length �d(�0)has also been tested diretly [55℄ by measuring the ky = 0 projetion g(x)of the orrelation funtionG(i; j) = hÆsisj � 1=qi; (37)at �0 in the disordered phase using a luster estimator. By �tting withan ansatz appropriate for periodi boundary onditions, g(x)=a osh((x�L=2)=�d) + b osh((x � L=2)=�d), we obtained for q = 10 estimates in therange �d(�0) = 8:8(3) up to 10:2(9), depending on the lattie size (150�150and 300 � 150) and �t range. These values are about 10% � 20% smallerthan the exat value but (with a few exeptions) within the statistialerrors still ompatible. Similar analyses for q = 15 and 20 show the samequalitative trend [55℄. Subsequently, by measuring the orrelation lengthwith a more re�ned and better adapted estimator, the luster-diameterdistribution funtion, the preision ould be greatly improved and the exatvalues of �d(�0) ould be on�rmed with an auray of about 1%� 2% forall onsidered values of q [56℄.
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