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Abstract — The scaling behavior of self-avoiding walks (SAWSs) on the backbone of percolation
clusters in two, three and four dimensions is studied by Monte Carlo simulations. We apply the
pruned-enriched Rosenbluth chain growth method (PERM). Our numerical results bring about the
estimates of critical exponents, governing the scaling laws of disorder averages of the end-to-end
distance of SAW configurations. The effects of finite-size scaling are discussed as well.

Copyright © EPLA, 2008

Introduction. — The universal configurational proper-
ties of long, flexible polymer chains in a good solvent are
perfectly described by the model of self-avoiding walks
(SAWSs) on a regular lattice [1]. In particular, the aver-
age square end-to-end distance (R?), and the number of
configurations Zxn of SAWs with N steps obey the scaling
laws:

<R2> ~ NQVSAW, In ~ ZNN'YSAW_l’

(1)

where vgaw and ysaw are the universal critical exponents
that only depend on the space dimension d, and z is a
non-universal connectivity constant, depending also on the
type of the lattice. The properties of SAWs on a regular
lattice have been studied in detail both in computer
simulations [2-7] and analytical approaches [8-11]. For
example, in the space dimension d =3 one finds within
the frame of the field-theoretical renormalization group
approach vgaw = 0.5882+£0.0011 [11] and Monte Carlo
simulations give vgaw = 0.5877£0.0006 [5]. For space
dimensions d above the upper critical dimension d,, =4,
the scaling exponent becomes trivial: vsaw(d >4) =1/2.

A question of great interest is how SAWSs behave
on randomly diluted lattices, which may serve as a
model of linear polymers in a porous medium. Numerous
numerical [12-22] and analytical [17,23-29] studies lead
to the conclusion that weak quenched disorder, when the
concentration p of lattice sites allowed for the SAWs is
higher than the percolation concentration p., does not

(2) B-mail: blavatska@itp.uni-leipzig.de
(®)E-mail: janke@itp.uni-leipzig.de

Table 1: Critical concentration p. of site-diluted lattices and
fractal dimensions of percolation cluster dgc and backbone of
the percolation cluster dfc for different space dimensions d.

d Pe df’ d?

2 0592746 [30]  91/49 [33]  1.650=0.005 [35]
3 0.31160 [31]  2.514+0.02 [34]  1.86£0.01 [35]
4 019688 [32]  3.05+0.05[34]  1.95+0.05 [35]

influence the scaling of SAWs. The scaling laws (1) are
valid in this case with the same exponents, independently
of p. More interesting is the case, when p equals the
critical concentration p. (see table 1) and the lattice
becomes percolative. Studying properties of percolative
lattices, one encounters two possible statistical averages.
In the first, one considers only incipient percolation
clusters whereas the other statistical ensemble includes all
the clusters, which can be found in a percolative lattice.
For the latter ensemble of all clusters, the SAW can start
on any of the clusters, and for an N-step SAW, performed
on the i-th cluster, we have (R?) ~ (2, where [; is the aver-
aged size of the i-th cluster. In what follows, we will be
interested in the former case, when SAWs reside only on
the percolation cluster. In this regime, the scaling
laws (1) hold with new exponents v, #vsaw,
Vp. #¥saw [14-16,20,21,36,37]. A hint to the physi-
cal understanding of this phenomenon is given by the fact
that weak disorder does not change the dimension of a
lattice, whereas the percolation cluster itself is a fractal
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with fractal dimension dzi dependent on d (see table 1). In
this way, scaling-law exponents of SAWs change with the
dimension df of the (fractal) lattice on which the walk
resides. Since dyu, =6 for percolation [38], the exponent
vp.(d>6)=1/2. For the connectivity constant z,, of
SAWs on a percolative lattice the estimate z, =p.z is
suggested, where z is the value on the corresponding pure
lattice [39].

Until recently there did not exist any satisfactory
theoretical estimates for scaling-law exponents of SAWs
on percolation clusters, based on refined field-theoretical
approaches. In particular this was caused by the rather
complicated diagrammatic technique of the perturbation
theory calculations. Recently the field theory developed
by Meir and Harris [17] was reconsidered in refs. [36,37],
where the field theory with complex interacting fields has
been constructed and a special diagrammatic technique
developed. The scaling properties of a SAW on a percola-
tion cluster were found to be described by a whole family
of correlation exponents vV with v() =, .

Note that up to now there do also not exist many
studies dedicated to Monte Carlo (MC) simulations of
our problem and they do still exhibit some controversies.
The first MC study of a SAW statistics on a disordered
(diluted) lattice in three dimensions was performed in the
work of Kremer [12]. It indicates no change in the exponent
v for weak dilution, but for concentrations of dilution near
the percolation threshold a higher value v, ~2/3 was
observed.

This result was the only numerical estimate of v, for
a number of years, until Lee et al. [13,14] performed
MC simulations for a SAW on the percolation cluster
for square and cubic lattices at dilutions very close to
the percolation threshold. The earlier two of these works
indicate the rather surprising result that in two dimen-
sions the critical exponent v, is not different compared to
the pure lattice value. Later, some numerical uncertainties
were corrected and the value for v, found in two dimen-
sions is in a new universality class. This result has been
confirmed in a more accurate study of Grassberger [15].
In the case of three and four dimensions, there also exist
estimates indicating a new universality class [14,16], but
no satisfactory numerical values have been obtained so far.
It was argued in ref. [20], that series enumerations of all
possible SAW configurations on a percolation cluster give
a greater value for v, (and therefore in better agreement
with theoretical prediction) than that obtained from MC
simulations due to some specific peculiarities of the latter
method.

In the present paper, the so-called chain-growth
algorithm is applied. Conventional MC methods such
as multicanonical sampling [40] or the Wang-Landau
method [41] expose problems in tackling “hidden” confor-
mational barriers in combination with chain update moves
which usually become inefficient at low temperatures,
where many attempted moves are rejected due to the
self-avoidance constraint. Rosenbluth chain growth avoids

gy suee 969y
2930 % 28

Fig. 1: Percolation cluster on a d = 2-dimensional regular lattice
of edge length L = 50.

occupied neighbors at the expense of a bias. Chain-
growth methods with population control such as PERM
(pruned-enriched Rosenbluth method) [42,43] improve
the procedure considerably by utilizing the counter-
balance between Rosenbluth weight and Boltzmann
probability. PERM has been applied successfully to a
wide class of problems, in particular to the ©-transition
of homopolymers [42], trapping of random walkers on
absorbing lattices [44], study of protein folding [45], etc.

Construction of percolation clusters. — We
consider site percolation on regular lattices of edge
lengths up to Ly.x = 300,200, 50 in dimensions d = 2, 3, 4,
respectively. Each site of the lattice was assigned to be
occupied with probability p. (values of critical concen-
tration in different dimensions are given in table 1), and
empty, otherwise. To extract the percolation cluster,
we apply the algorithm of site labeling, based on the
one proposed by Hoshen and Kopelman [46]. If for a
given lattice it is not possible to find a cluster that
wraps around in all coordinate directions, this disordered
lattice is rejected and a new one is constructed. The
typical structure of percolation clusters is presented
in fig. 1. On finite lattices the definition of spanning
clusters is not unique (e.g., one could consider clusters
connecting only two opposite borders), but all definitions
are characterized by the same fractal dimension and are
thus equally legitimate. The definition here employed
has the advantage of yielding the most isotropic clusters.
Note also that directly at p = p. more than one spanning
cluster can be found in the system, and the probability
P(k) for at least k separated clusters grows with the
space dimension as P(k) ~ exp(—ak®(4=1)) [47.48]. In
our study, we take into account only one cluster per
each disordered lattice constructed, in order to avoid
presumable correlations of the data.

Since we aim at investigating the scaling of SAWSs
on a percolative lattice, we are interested rather in the
backbone of the percolation cluster, which is defined as
follows. Assume that each bond (or site) of the cluster is
a resistor and that an external potential drop is applied
at two ends of the cluster. The backbone is the subset
of the cluster consisting of all bonds (or sites) through
which the current flows; i.e., it is the structure left
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Fig. 2: Elastic (left) and geometrical (right) backbones of the
percolation cluster depicted in fig. 1.

when all “dangling ends” are eliminated from the cluster.
The SAWs can be trapped in “dangling ends”, therefore
infinitely long chains can only exist on the backbone of
the cluster.

The algorithm for extracting the backbone of a given
percolation cluster was first introduced in [49] and
improved in [50]. This so-called burning algorithm is
divided into two parts. First, we choose the starting point
—“seed”— at the center of the cluster. For all the sites
on the edge of the lattice, belonging to the percolation
cluster, we find the shortest paths between the “seed” and
the given site. As a result, we obtain a so-called skeleton
or elastic backbone [51] of the percolation cluster, shown
in fig. 2, left.

In the second part of the algorithm, we consider succes-
sively each site of the elastic backbone and check whether
a “loop” starts from this site. A “loop” is a path of sites,
belonging to the percolation cluster, which is connected
with the elastic backbone by no less than two sites. Sites
of the elastic backbone together with sites of “loops” form
finally the geometric backbone of the cluster (see fig. 2,
right).

Once a cluster is generated, its fractal dimension in
topological (or chemical) space | can be determined
according to [50]

(Mp (1)) ~ 1%, (2)

where Mp(l) is its “mass” (number of cluster sites) and
d’ is the fractal dimension of the backbone in chemical
space. It is related to the dimension di in coordinate
space by dfc = dﬁgdmin, where d,;, is the fractal dimension
of the shortest path on the backbone and describes the
scaling behavior between r and [, i.e. (I) ~rdmin with
dmin = 1.130£0.004 in d =2 [52], dpin = 1.374 £0.003 in
d =3 [31], din = 1.567 in d = 4 [53]. The results for fractal
dimensions of the percolation cluster and its geometrical
backbone in d =2, 3,4 are compiled in table 1.

The method. — We use the pruned-enriched Rosen-
bluth method (PERM), proposed in the work of
Grassberger [42]. The algorithm is based on ideas from
the very first days of Monte Carlo simulations, the
Rosenbluth-Rosenbluth (RR) method [2] and enrichment
strategies [54]. Let us consider the growing polymer chain,

i.e., the n-th monomer is placed at a randomly chosen
neighbor site of the last placed (n—1)-th monomer
(n < N, where N is the total length of the chain). In order
to obtain correct statistics, if this new site is occupied,
any attempt to place a monomer at it results in discarding
the entire chain. This leads to an exponential “attrition”,
the number of discarded chains grows exponentially with
the chain length, which makes the method useless for
long chains. In the RR method, occupied neighbors are
avoided without discarding the chain, but the bias is
corrected by means of giving a weight W, ~ ([T;, mu) to
each sample configuration at the n-th step, where m; is
the number of free lattice sites to place the I-th monomer.
When the chain of total length N is constructed, the
new one starts from the same starting point, until the
desired number of chain configurations is obtained. The
configurational averaging for the end-to-end distance

r=+/R?(N) is then given by

< > - Zconf foonfrconf _ Z
= Z Wconf -
conf N r

where W™ is the weight of an N-monomer chain in
a given configuration and P(r,N) is the distribution
function for the end-to-end distance.

While the chain grows by adding monomers, its weight
will fluctuate. PERM suppresses these fluctuations by
pruning configurations with too small weights, and by
enriching the sample with copies of high-weight config-
urations [42]. These copies are made while the chain
is growing, and continue to grow independently of each
other. Pruning and enrichment are performed by choosing
thresholds W, and W, depending on the estimate of the
partition sums of the n-monomer chain. These thresholds
are continuously updated as the simulation progresses.
The zeroes iteration is a pure chain-growth algorithm
without reweighting. After the first chain of full length
has been obtained, we switch to W, W,”. If the current
weight W,, of an n-monomer chain is less than W, a
random number r =0, 1 is chosen; if r =0, the chain is
discarded, otherwise it is kept and its weight is doubled.
Thus, low-weight chains are pruned with probability 1/2.
If W,, exceeds W, the configuration is doubled and the
weight of each copy is taken as half the original weight.
For updating the threshold values we apply similar rules
as in [43,45): W,> = C(Z,/Z1)(cn/c1)? and W5 = 0.2W,7,
where ¢, denotes the number of created chains having
length n, and the parameter C' controls the pruning-
enrichment statistics. After a certain number of chains of
total length NV is produced, the iteration is finished and a
new tour starts. We adjust the pruning-enrichment control
parameter such that on average 10 chains of total length NV
are generated per each iteration [45], and perform 106 iter-
ations. Also, what is even more important for efficiency, in
almost all iterations at least one such chain was created.

rP(r,N), (3)

Results. — To study scaling properties of SAWs on the
backbone of percolation clusters, we choose as the starting
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Fig. 3: Disorder averaged distribution function rP(r, N) vs.
the scaling variable r/N"?¢ in d =3 dimensions. Lattice size
L =200, number of SAW steps N =40 (squares), N =50
(pluses), N =60 (diamonds), N =70 (crosses), N =80 (stars).

point the “seed” of the cluster, and apply the PERM algo-
rithm, taking into account, that a SAW can have its steps
only on the sites belonging to the backbone of the perco-
lation cluster. In the given problem, we have to perform
two types of averaging: the first average is performed
over all SAW configurations on a single backbone
according to (3); the second average is carried out over
different realizations of disorder, i.e. over many backbone
configurations:

I | <
P(r,N)=5 > P(r,N).

Here, C is the number of different clusters, the index c
means that a given quantity is calculated on the cluster c,
P(r,N) is the distribution function, averaged over cluster
configurations.

The case of so-called “quenched disorder” is considered,
where the average over different realizations of dis-
order is taken after the configurational average has
been performed. As pointed out in [15], the correctness
of results, obtained in the picture of “quenched” dis-
order, depends on whether the location of the starting
point of a SAW is fixed while the configurational averaging
is performed, or not. In the latter case, one has to average
over all locations and effectively this corresponds to the
case of annealed disorder. Thus, as we have already stated
above, we start each configuration of a SAW on the same
site —the “seed” of the backbone of a given percolation
cluster. We use lattices of size up to L. = 300,200, 50
in d=2,3,4, respectively, and performed averages over
1000 percolation clusters in each case.

0.8

rP(r,N)

o
06} $

o
04f .

02

Fig. 4: Disorder averaged distribution function rP(r, N) vs. the
scaling variable r/N"Pc in d = 4 dimensions. Lattice size L = 50,
number of SAW steps N =15 (squares), N =18 (triangles),
N =20 (pluses), N =25 (crosses), N =30 (stars).

The disorder averaged distribution function (5) can be

written in terms of the scaled variables r/(r) as

rP(r,N)~ f(r/(r)) ~ f(r/N"). (6)
The distribution function is normalized according to
>..P(r,N)=1. The numerical results for the distribu-
tion function in d =3 and d =4 are shown in figs. 3 and 4
for different V. When plotted against the scaling variable
r/N¥ve the data are indeed found to nicely collapse onto
a single curve, using our values for the exponent v,
reported in table 3 below.

To estimate the critical exponents v, , linear least-
square fits with lower cutoff for the number of steps Npyin
are used. The x? value (sum of squares of normalized
deviation from the regression line) serves as a test of the
goodness of fit (see fig. 5 and table 2).

Since we can construct lattices only of a finite size L,
it is not possible to perform very long SAWs on it. For
each L, the scaling (1) holds only up to some “marginal”
number of SAWs steps Nyarg, as is shown in fig. 6. We
take this into account when analyzing the data obtained;
for each lattice size we are interested only in values of
N < Narg, which results in effects of finite-size scaling
for critical exponents.

Let us assume that Npape ~ L, and for a SAW confined
inside a lattice with size L finite-size scaling holds:

v (7).

» (7)

where
g(z) =const when N < L“

so that eq. (1) is recovered. The crossover occurs at
(r) ~ L, N = Nmarg, which leads to w = 1/v. Here, v stands
for vgaw or v,  for the cases of the pure lattice and
backbone of percolation cluster, respectively. Similar scal-
ing properties have already been observed in problems of
random walks in confined environment in ref. [55].
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Fig. 5: Disorder averaged end-to-end distance vs. number of
steps in double-logarithmic scale for SAWs on the backbone
of percolation clusters in d=2 (pluses), d=3 (stars), d=4
(squares). Lines represent linear fitting, statistical error bars
are of the size of symbols.

Table 2: Results of linear fitting of obtained results for (r)
for SAWs in d =3 dimensions on the backbone of percolation
clusters, L = 200. x? denotes the sum of squares of normalized
deviation from the regression line, DF’ is the number of degrees
of freedom.

Table 3: The exponent v, for a SAW on a percolation cluster.
FL: Flory-like theories, EE: exact enumerations, RS, RG: real-
space and field-theoretic renormalization group. For SAWs on
the regular lattice one has: vsaw (d=2)=3/4 [9], vsaw (d=3)=
0.5882(11) [11], vsaw (d > 4) =1/2.

vy \d 2 3 4
FL [28] 0.77 0.66 0.62
EE [20]| 0.770(5) 0.660(5)
21] | 0.778(15) 0.66(1)
21]| 0.787(10) 0.662(6)
RS 25| 0.778 0.724
20| 0.767
RG [36] 0.785 0.678 0.595
[37]@) 0.796 0.669 0.587
MC [14] | 0.77(1)
[15] | 0.783(3)
[16] 0.62-0.63 0.56-0.57
Our results | 0.782+0.003 | 0.667 £ 0.003 | 0.586 + 0.003
() Applying [1]/[2] Padé approximation.
09 09
0.5 085 ‘XVMX
08 m‘*"‘"’“"“ﬂx 08 *‘;;;&
— 075 kY 075 ”‘:J(:._
3»q 07 "‘,_ 3»’4 07 :’%.,’
s S = |
=T - = 06 5
055 'x'x 0.55
osp :x*,&- 05 1
0 01 02 03 04 05 06 07 0 01 02 03 04 05 06 07
N/L¥ N/L¥

Noin Vp, a x?/DF
6 0.66540.003 0.946 4= 0.003 2.783
11 0.668 =0.003 0.935 4 0.004 2.269
16 0.6694+0.003 0.93040.004 2.054
21 0.6694+0.003 0.924 4 0.004 1.345
26 0.6674+0.002 0.930=+0.006 0.743
31 0.668 20.002 0.934 £ 0.008 0.844
4.5
35F
= s A
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25 .‘
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Fig. 6: Averaged end-to-end distance vs. number of steps on a
double-logarithmic scale for SAWs on a pure lattice (left) and
on the backbone of a percolation cluster (right) in d=2. In
both cases the lattice size L changes from below: L =50, 80,
100, 150, 200. Error bars are of the size of symbols.

Having estimated values for the critical exponent v,_,
presented in table 3, we can proceed with testing the
finite-size scaling assumption (7). When plotted against
the scaling variable N/L“, the data for different lattice

Fig. 7: The scaling function g(N/L”) as a function of its
argument at data collapse for three different lattice sizes
L =100,150,200 in d=2. Left: pure lattice, right: backbone
of the percolation cluster.

sizes L should collapse onto a single curve if we have found
the correct values for the critical exponents. The numerical
results for the scaling function g(N/L*) both for the pure
lattice (for comparison) and the backbone of percolation
clusters are presented in fig. 7. Note, that our estimation of
the exponent vgaw in two dimensions gives 0.745 + 0.002.

Conclusions. — The present paper concerns the
universal configurational properties of SAWs on percola-
tive lattices. The statistical averaging was performed
on the backbone of the incipient percolation cluster,
which has a fractal structure and is characterised by
fractal dimension dfc . Note, that up to date there do
not exist many works dedicated to Monte Carlo (MC)
simulations of our problem and they do still exhibit some
controversies. In particular, in the case of four dimensions,
there exist only estimates, indicating a new universality
class [14,16], but no satisfactory numerical values for
critical exponents have been obtained so far.
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Applying the pruned-enriched Rosenbluth method
(PERM), we studied SAWs on the backbone of percola-
tion clusters, using lattices of size up to Lyax = 300, 200, 50
in d=2,3,4, respectively, and performing averages over
1000 clusters in each case. Our results bring about
numerical values of critical exponents, governing the
end-to-end distance of SAWs in a new universality class.
The effects of finite lattice size are discussed as well.
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