
Computer Physics Communications 220 (2017) 341–350

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

GPU accelerated population annealing algorithm✩

Lev Yu. Barash a,b, Martin Weigel c,*, Michal Borovský b,d, Wolfhard Janke e,
Lev N. Shchur a,b,f

a Landau Institute for Theoretical Physics, 142432 Chernogolovka, Russia
b Science Center in Chernogolovka, 142432 Chernogolovka, Russia
c Applied Mathematics Research Centre, Coventry University, Coventry, CV1 5FB, United Kingdom
d P.J. Šafárik University, Park Angelinum 9, 040 01 Košice, Slovak Republic
e Institut für Theoretische Physik, Universität Leipzig, Postfach 100920, 04009 Leipzig, Germany
f National Research University Higher School of Economics, 101000 Moscow, Russia

a r t i c l e i n f o

Article history:
Received 16 March 2017
Received in revised form 21 June 2017
Accepted 25 June 2017
Available online 1 July 2017

Keywords:
Population annealing
Monte Carlo simulations
Ising model
Parallel computing
Graphics processing units
Multi-spin coding

a b s t r a c t

Population annealing is a promising recent approach for Monte Carlo simulations in statistical physics,
in particular for the simulation of systems with complex free-energy landscapes. It is a hybrid method,
combining importance sampling through Markov chains with elements of sequential Monte Carlo in the
form of population control. While it appears to provide algorithmic capabilities for the simulation of such
systems that are roughly comparable to those of more established approaches such as parallel tempering,
it is intrinsically much more suitable for massively parallel computing. Here, we tap into this structural
advantage andpresent a highly optimized implementation of the population annealing algorithmonGPUs
that promises speed-ups of several orders of magnitude as compared to a serial implementation on CPUs.
While the sample code is for simulations of the 2D ferromagnetic Ising model, it should be easily adapted
for simulations of other spin models, including disordered systems. Our code includes implementations
of some advanced algorithmic features that have only recently been suggested, namely the automatic
adaptation of temperature steps and a multi-histogram analysis of the data at different temperatures.
Program summary
Program Title: PAIsing
Program Files doi: http://dx.doi.org/10.17632/sgzt4b7b3m.1
Licensing provisions: Creative Commons Attribution license (CC BY 4.0)
Programming language: C, CUDA
External routines/libraries: NVIDIA CUDA Toolkit 6.5 or newer
Nature of problem: The program calculates the internal energy, specific heat, several magnetization
moments, entropy and free energy of the 2D Ising model on square lattices of edge length Lwith periodic
boundary conditions as a function of inverse temperature β .
Solution method: The code uses population annealing, a hybrid method combining Markov chain updates
with population control. The code is implemented for NVIDIA GPUs using the CUDA language and em-
ploys advanced techniques such as multi-spin coding, adaptive temperature steps and multi-histogram
reweighting.
Additional comments: Code repository at https://github.com/LevBarash/PAising.
The system size and size of the population of replicas are limited depending on the memory of the GPU
device used.
For the default parameter values used in the sample programs, L = 64, θ = 100, β0 = 0, βf = 1,
∆β = 0.005, R = 20 000, a typical run time on an NVIDIA Tesla K80 GPU is 151 seconds for the single
spin coded (SSC) and 17 seconds for the multi-spin coded (MSC) program (see Section 2 for a description
of these parameters).

© 2017 Elsevier B.V. All rights reserved.

✩ This paper and its associated computer program are available via the Computer
Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).

* Corresponding author.
E-mail address:Martin.Weigel@gmail.com (M. Weigel).

http://dx.doi.org/10.1016/j.cpc.2017.06.020
0010-4655/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2017.06.020
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2017.06.020&domain=pdf
http://dx.doi.org/10.17632/sgzt4b7b3m.1
https://github.com/LevBarash/PAising
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:Martin.Weigel@gmail.com
http://dx.doi.org/10.1016/j.cpc.2017.06.020

342 L.Yu. Barash et al. / Computer Physics Communications 220 (2017) 341–350

1. Introduction

Monte Carlo methods are among the core techniques for study-
ing the statics and dynamics of particle systems in classical and
quantumphysics, in particular for systems in statistical physics [1].
Although for a few problems simple sampling is reasonably effi-
cient, most applications are based on importance sampling tech-
niques. Among them, Markov chain Monte Carlo (MCMC) is by far
the most widely used approach in statistical physics. In quantum
Monte Carlo, on the other hand, one can evaluate thewave function
in a path-integral formulation in imaginary time by a swarmof par-
ticles diffusing in configuration space that undergo a sequence of
birth–death processes [2]. This is a special case of a proceduremore
generally known as sequential Monte Carlo [3]. Such procedures
have been more reluctantly adopted in statistical physics appli-
cations, but they have gained some traction recently, for example
in variants of ‘‘go with the winners’’ simulations [4]. In sequential
Monte Carlo, configurations are gradually built in possibly biased
steps, sequentially accumulating weights that multiply configu-
rations in the final averages. In many applications such weights
fluctuate wildly, thus leading to rather unstable results. In the
‘‘go with the winners’’ approaches, configurations are selectively
cloned or pruned in accordance with their weight to tame these
fluctuations, a procedure often referred to as population control.

One recent approach of this type is the population annealing
(PA) algorithm [5,6]. There, a large number of configurations are
prepared in independent equilibrium configurations, for instance
at infinite temperature. Each configuration evolves according to a
standard MCMC approach at the given temperature. The popula-
tion is then gradually cooled, and each configuration sequentially
builds up a weight depending on its energy at the instant of
temperature change. Population control is used to keep weight
fluctuations under control. We here focus on a variant where
‘‘perfect’’ population control is used at each temperature step such
that all weights remain equal to unity at all times [7]. The approach
has been successfully used for equilibrium simulations of spin-
glass systems [8–10], and also for finding ground states in spin
glasses and other systems with frustrated interactions [11,12].
Recently, we have studied the behavior of PA for simulations of the
2D Ising model, analyzing systematically the dependence on the
population size and annealing protocol, and proposed a number of
improvements [13].

The era of serial computing came to an end in the early
2000s when CPU clock frequencies first hit the ‘‘wall’’ of about
3.5 GHz, beyond which heat dissipation becomes unfeasible with
conventional techniques and the power consumption increases too
steeply. While Moore’s law [14] predicting an exponential growth
of the number of transistors in an integrated circuit continues to
hold, the resulting exponential growth of computational power
seen for CPUs essentially stopped being an increase of serial per-
formance (for instance through the increase of clock speeds) and
now translates into a corresponding increase in the number of par-
allel cores or other compute units. Thus, the comfortable situation
where the same old code or, at least, the same old algorithm could
be run on more modern hardware with exponentially decreasing
run times with every new generation of machine, has come to an
end. Instead, it has become necessary to design and implement
solutions to our computational problems that scale well up to
thousands or maybe even millions of cores [15]. A computational
environment that recently proved to be a particularly useful path-
way towards massively parallel computing are graphics process-
ing units (GPUs) and similar accelerator devices. They feature a
much higher density of actual compute units than CPUs, at the
expense of reduced cache memories and control logic units that
are mostly useful for accelerating serial and unpredictable loads,
and are hence very well suited for the needs of scientific comput-
ing [16,17]. In statistical physics, significant speed-ups have been

observed for Ising model simulations with local [18,19] as well
as non-local [20] update algorithms, for continuous-spin systems
[21,22], for spin glasses [21,23] and random-field models [24], for
Potts systems [25], for polymers [26] andmany other applications.

The PA algorithm that requires the parallel simulation of a
population of tens of thousands up to millions of replicas appears
to be a perfect match for this new type of computational resource.
The quality of approximation increases with population size [9,13]
such that a higher parallel load is clearly advantageous. As we
will show below, we observe a GPU speed-up of around 230 times
over a serial CPU based code, thus bringing the wall-clock time for
typical calculations of the 2D Ising system considered here down
to minutes in many cases. For such models with Ising spins, the
additional application of multi-spin coding yields a further up to
10-fold speed-up, such that we reach a peak performance of 10
ps per spin flip of the whole PA simulation code, including the
resampling and measurement parts. We provide a flexible imple-
mentation that can be configured using command-line switches
and should be easily adaptable to simulations of related models
such as 3D Ising systems, Potts and O(n) models, and spin glasses.
In extension to the standard PA algorithm, our code also allows for
the adaptive choice of inverse temperature steps and an analysis
of the simulation results with a multi-histogram approach.

The remainder of this paper is organized as follows. In Section 2,
we summarize the PA algorithm and the extensions employed
here. Section 3 discusses our implementation on GPU, while Sec-
tion 4 introduces the program variant that employs multi-spin
coding. In Section 5, we investigate the performance and reliability
of our code. Finally, Section 6 contains our conclusions.

2. Algorithm

The population annealing method was first discussed by Iba [5]
in the general context of population-based algorithms and later
applied to spin glasses by Hukushima and Iba [6]. More recently,
Machta [7] used a method that avoids the recording of weight
functions through population control in every step. This is the
variant we discuss and implement here.

2.1. Population annealing

As outlined above, the approach is a hybrid of sequential algo-
rithm and MCMC that simulates a population of configurations at
each time, updating themwithMCMCmethods and resampling the
population periodically as the temperature is gradually lowered.
The algorithm can be summarized as follows:

1. Set up an equilibrium ensemble of R0 = R independent
copies (replicas) of the system at inverse temperature β0.
Typically, β0 = 0, where this can be easily achieved.

2. To create an approximately equilibrated sample at βi >

βi−1, resample configurations j = 1, . . . , Ri−1 with their
relative Boltzmann weight τi(Ej) = exp[−(βi − βi−1)Ej]/Qi,
where

Qi ≡ Q (βi−1, βi) =
1

Ri−1

Ri−1∑
j=1

exp[−(βi − βi−1)Ej]. (1)

3. Update each replica by θ rounds of an MCMC algorithm at
inverse temperature βi.

4. Calculate estimates for observable quantities O as popula-
tion averages

∑
jOj/Ri.

5. Goto step 2 unless the target inverse temperature βf has
been reached.

L.Yu. Barash et al. / Computer Physics Communications 220 (2017) 341–350 343

Ifwe chooseβ0 = 0, equilibriumconfigurations for the replicas can
be generated by simple sampling, i.e., by assigning independent,
purely random spin configurations to each copy. The resampling
process in step 2 can be realized in different ways [6,7]. Here,
we use the following approach [11]. For each replica j in the
population at inverse temperatureβi−1, wedrawa randomnumber
r uniformly in [0, 1). The number of copies of replica j in the new
population is then taken to be

r ji =

{
⌊τ̂i(Ej)⌋ if r > τ̂i(Ej) − ⌊τ̂i(Ej)⌋
⌊τ̂i(Ej)⌋ + 1 otherwise, (2)

where τ̂i(Ej) = (R/Ri−1)τi(Ej) is renormalized to ensure that the
population size stays close to the target value R. Here, ⌊x⌋ denotes
the largest integer that is less than or equal to x (i.e., rounding
down). The newpopulation size is Ri =

∑
jr

j
i . Thismethod requires

only a single call to the random number generator for each replica
in the current population and leads to very small fluctuations in the
total population size. Note that it is possible that r ji = 0, in which
case the corresponding replica disappears from the population,
while other configurations will be replicated several times. In the
standard setup, steps of equal size in inverse temperature are
taken, i.e.,

βi = βi−1 + ∆β,

and ∆β is an adjustable parameter. We discuss an adaptive, au-
tomatic choice of temperature steps in Section 2.3. In the code
presented here, we use θ sweeps of Metropolis single-spin flip
updates to equilibrate each replica in each temperature step. Other
updates such as heat-bath dynamics or even non-local cluster
moves could be employed easily as well.

Measurements are taken as population averages, and our code
produces estimates for the following quantities,

e =
1
Ri

∑
j

Ej/N,

C = β2N
(
e2 − e2

)
,

|m| =
1
Ri

∑
j

|Mj|/N,

m2 =
1
Ri

∑
j

(Mj/N)2,

m4 =
1
Ri

∑
j

(Mj/N)4.

(3)

Here, Ej denotes the configurational energy and Mj the configu-
rational magnetization of replica j, and N is the number of spins.
Additionally, PA provides a natural estimate of the free energy,

− βiF (βi) = ln Zβ0 +

i∑
k=1

lnQk, (4)

where Zβ0 is the partition function at inverse temperatureβ0, Zβ0 =

2N for Ising spins and β0 = 0, and Qk is the reweighting factor (1)
used in the resampling. From Eqs. (3) and (4), we can also compute
the entropy per site via

S(βi)/N = βie(βi) − βiF (βi)/N. (5)

2.2. Weighted averages

It was shown in Ref. [7] that one of the strengths of the PA
approach is that by combining the data from independent runs not
only statistical errors are decreased, but also systematic deviations
can be reduced. This is the case if one uses weighted averages
of results of independent runs. As was shown in Refs. [7,9], an

unbiasedwayof combining the results ofM independent runs of PA
for the same system and target population size is to weight them
by the free energies as estimated according to Eq. (4),

Ã(βi) =

M∑
m=1

ωm(βi)Ām(βi), (6)

with

ωm(βi) =
e−βiFm(βi)∑
m e−βiFm(βi)

, (7)

where Ām(βi) denotes the average of observable A in simulation m
and Fm(βi) the corresponding free-energy estimator according to
Eq. (4). The concept of weighted averages allows for an additional
parallelization in splitting the total simulation into independent
parts. The weighting ensures that this does not substantially de-
grade the quality of the results [9,13]. Note that the concept of
weighted averages is more general than the PA approach [27], but
for the present algorithm the necessary free-energy estimates are
a free by-product of the simulation according to Eq. (4). In the
implementation provided here, multiple runs can be requested on
the command line, but the weighted averaging of results is left to
the user to perform separately.

2.3. Adaptive temperature steps

While an annealing cycle of the population is valid for any
choice of the temperature sequence β0, β1, . . ., and given a suffi-
ciently large number θ ofMCMC sweeps employed at each temper-
ature it also leads to essentially unbiased estimates of observables,
the resampling step is only effective if βi − βi−1 is sufficiently
small [13]. The optimal size of temperature steps will itself de-
pend on temperature, and a uniform stepping is not in general
ideal. As was recently shown in Ref. [13] uniform effectiveness of
resampling is achieved by ensuring a constant overlap of the en-
ergy histograms of population members between the neighboring
temperatures. This overlap can be computed from the reweighting
factors before actually performing the resampling step, and one
finds

α(βi−1, β
′) =

1
Ri−1

Ri−1∑
j=1

min
(
1,

R exp[−(β ′
− βi−1)Ej]

Ri−1Q (βi−1, β ′)

)
. (8)

Clearly, 0 ≤ α(βi−1, β
′) ≤ 1, and one can use numerical root

finding techniques such as, for instance, bisection search, to find
β ′ such that α(βi−1, β

′) = α∗ and then set βi = β ′. Values of
0.5 ≲ α∗ ≲ 0.9 provide sufficient histogram overlap without
an unnecessary proliferation of temperature steps. In practice, if
M runs are performed for additional averaging, our code used in
adaptive mode decides about temperature steps only in the first
run and keeps the temperature sequence fixed for the remaining
passes.

2.4. Multi-histogram reweighting

As a PA sweep produces samples at a large number of closely
spaced temperatures (typically at least 100, even for small sys-
tems), it is natural to combine these data to increase the ac-
curacy and reduce statistical fluctuations in the spirit of the
multi-histogram analysis of Ferrenberg and Swendsen [27]. Ne-
glecting correlations between the data at different temperatures
as well as the effect of autocorrelations, an optimized combination
of histograms to yield an estimate of the density of states is given
by [13]

Ω(E) =

∑Nβ

i=1 Pβi (E)∑Nβ

i=1 Ri exp[βiF (βi) − βiE]

. (9)

344 L.Yu. Barash et al. / Computer Physics Communications 220 (2017) 341–350

Here, Nβ denotes the total number of temperatures, and we as-
sumed a normalization of the histogram at inverse temperature βi
such that

∑
EPβi (E) = Ri. We note that the storage requirements

are moderate as at each time one only needs to store the sum of
histograms up to the current temperature and not each histogram
individually. Generalizations to other quantities such as magneti-
zations are possible [13].

3. GPU realization

For definiteness, we focus on an implementation for the ferro-
magnetic, zero-field Ising model on the square lattice with Hamil-
tonian

H = −J
∑
⟨i,j⟩

sisj. (10)

Here, interactions are only between nearest neighbors ⟨i, j⟩ and
periodic boundary conditions are assumed. As is well known, this
model undergoes a continuous phase transition at the inverse tem-
perature βc =

1
2 ln(1 +

√
2) [28]. The question of how well suited

population annealing is as a simulation technique to study this
model and its transition is discussed in Ref. [13]. Here, we are not
concerned with this aspect, but we use this model as a convenient
starting point since a wealth of exact or extremely accurate results
are available for it as reference points, and a generalization of the
code to other spin models and even more general systems such as
polymers or particle systems should be rather straightforward.

General considerations. Inspecting the algorithm given in Sec-
tion 2.1, one identifies three computationally demanding steps: a
resampling of the population that involves the determination of
weight factors and the copying of replicas, the update of individual
configurations with MCMC moves (i.e., spin flips), and the mea-
surement of observables. As we shall see below when reporting
the performance results, most time (on CPU or GPU) is normally
spent on spin flips (see also Ref. [13]), while for typical choices
of θ (θ ≥ 10, say) the resampling step and the measurements of
the elementary quantities listed in Eqs. (3)–(5) are much less time
consuming.1 These observations suggest to also choose the effort
for optimization of each of these parts correspondingly. We hence
first focus on the spin updates.

One of the basic features of present day GPU devices that is of
paramount importance for performance is the technique of latency
hiding implemented in the scheduling algorithm [29]. Each time
an elementary group of threads (given by a warp of 32 threads
on current NVIDIA GPUs) accesses some data in memory that is
currently not cached, there is a latency of hundreds or even thou-
sands of clock cycles until the read or write operation completes.
Instead of leaving the compute units idle, the scheduler puts the
present warp in the queue and allows another warp that has
already completed its data transaction to use the compute units. If
only enough such thread groups are available, the compute cores
will be kept constantly busy and hence the memory latencies are
hidden away. Good GPU performance thus requires to break the
work into many threads, and optimal performance is often only
reached for thread numbers in excess of ten times the number of
available physical cores [30].

A second crucial requirement for exploiting the full potential of
GPUs relates to theminimization of costly globalmemory accesses.
This includes a reasonable level of compression of the data to be
transferred for the updates. For the present problem with Ising
variables si = ±1, it suggests to use the narrowest available
native data type to represent spins, which is an 8-bit integer, or to

1 As we shall see below, however, this balance is somewhat changed for the case
of a multi-spin coded implementation.

revert to a multi-spin coding approach. A discussion of the latter
technique is postponed until the next section. Further, the relative
slowness of memory makes it useful to cache and re-use data as
much as possible, which could involve using automatic caches or
the user-managed cache known as shared memory [29]. Finally,
it implies optimization geared towards increasing the locality of
memory operations as each direct access to global memory (im-
plying a cache miss) fetches a full cache line of 128 bytes. Ideally,
the threads in a warp access memory locations in the same cache
line(s), thus making use of all of the data that is actually loaded.
This concept is known asmemory coalescence.

Spin updates. By construction, population annealing suggests to
parallelize the calculations for different members of the popula-
tion. One particularly simple code setup is hence to assign one
thread to the updating of each replica such that in total Ri threads
are used for the MCMC part of the algorithm, i.e., for flipping spins.
Each thread then goes sequentially through the lattice. To ensure
good memory coalescence in this case, the same spins of each
replica should be placed next to each other in memory, so config-
urations should be stored in replica-major order. In practice, this
code setup, which we denote as replica-parallel, does show good
but not optimal performance, especially for smaller population
sizes where it does not provide enough parallelism. Where this
approach does not provide optimal performance, it still has the
advantage of being completely general, and it could consequently
be applied unaltered to PA simulations of any other model. We
hence mention it here as a safe fall-back solution especially for
problems for which it is not possible or straightforward to imple-
ment a domain decomposition (for instance for systemswith long-
ranged interactions).

To increase the amount of parallel work, for the present code for
the 2D Isingmodelwe opted to additionally parallelize the updates
for each single replica, using a domain decomposition of the lattice.
This was extensively used previously for simulations using MCMC
(single-spin flips) only. The basic step consists of a checkerboard
decomposition of the latticewhich allows for independent updates
of all spins of one sub-lattice.2 We denote the corresponding
scheme that parallelizes over replicas and spins as spin-parallel.
As the number of threads per block is limited to 1024 on current
CUDA devices, one either lets each thread update a certain range
of spins or employs a further decomposition of the lattice, be it
in strips [18], a second layer of checkerboard tiles [19,21] or some
other form of subdivision [23]. For the present code, we used one
of the simplest solutions and let the EQthreads threads of a block
employed for the spin-updating kernel checkKerALL() handle
the spins of a full replica in the following way (cf. Fig. 1): the first
EQthreads spins of the blue sub-lattice are updated in parallel,
then the next EQthreads blue spins and so forth until all blue
spins of the replica have been dealt with. After a synchronization
of all threads, they update the white spins of the current config-
uration in the same way, followed by another synchronization of
threads. Finally, this whole procedure is repeated θ times until
all spin updates have been implemented. This setup is illustrated
in Fig. 1 for an L = 32 lattice and EQthreads = 64. To in-
crease memory coalescence, we store the spins of each sub-lattice
together, separate from the spins of the other sub-lattice. Note
that for this setup, the spins are stored in a spin-major order, as
the threads of a block work on spins in the same replica. We are
not explicitly using shared memory for the spin flips as it was
not found to improve performance on the devices tested here. A
further optimization could consist of storing the spin arrays in
texture memory as suggested in Ref. [23] which simplifies index

2 Generalizations to other lattice structures and larger, but finite interaction
ranges are possible [21].

L.Yu. Barash et al. / Computer Physics Communications 220 (2017) 341–350 345

Fig. 1. Diagrammatic representation of themapping of thread blocks to spins in the
updating kernel. The code works with thread blocks of size EQthreads. Each block
works on a single replica of the population, using its threads to update tiles of size
2×EQthreads spins. To this end, it flips spins on one checkerboard sub-lattice first,
moving the tiles over the lattice until it is covered, synchronizes and then updates
the other sub-lattice.

arithmetics and allows to make use of the separate texture cache,
but for the sake of simplicity we refrain from such additional op-
timizations that are expected to yield only quite moderate further
speed improvements.

In this spin-parallel setup utilizing additional parallel work
inside of each replica, different replicas are handled by different
thread blocks. We request Ri thread blocks at kernel invocation
which will cause no problems for realistic population sizes on
recent devices where the maximum number of blocks is 231

− 1
≈ 2 × 109. For the actual spin updates, we use pre-calculated
tables of the Metropolis factors exp(−β∆E), stored in texture
memory3 [21]. For deciding about the acceptance of proposed
spin flips the algorithm requires one random number per spin up-
date. Random number generation on GPUs and in other massively
parallel contexts requires a way of producing many uncorrelated
(sub-)sequences, and certain parameters such as thememory foot-
printmake some of the standard generators in serial environments
unsuitable for a massively parallel application. Some of the related
issues are discussed in Refs. [31,32]. A suite of generators loosely
based on cryptographic algorithms turned out to be particularly
competitive in this context, namely the series of Philox generators
of Ref. [33]. In the tests conducted in Ref. [31], it combined excel-
lent GPU performance with a passing of all tests of the TestU01
suite [34]. Also, in the meantime, it has been included as one of
the generators in the curand library that is part of NVIDIA’s CUDA
distribution. It hence requires no further code to be used for the
present application. Additionally, users can readily replace it by
any of the alternative RNGs included in curand if they so desire.
One of the important advantages of the Philox generator is that
it does not require the transfer of a generator state between GPU
main memory and the multiprocessors doing the actual calcula-
tions. This is a consequence of it being a counter-based generator,

3 Note, however, that these tables need to be re-calculated for each (inverse)
temperature step.

i.e., the generation of the number xn = f (n) in the sequence does
not require knowledge of xn−1 or any other previous state. We use
one instance of the Philox_4x32_10 generator per thread, which
is initialized in the kernel with a sequence number determined
from the grid and block indices of the thread and a global iteration
parameter. The required numbers in (0, 1) are then generated by
in-line calls to curand_uniform() in the spin-updating kernel
checkKerALL(). This inline production of random numbers is
faster than a pre-generation in dedicated arrays in a separate ker-
nel and also muchmore efficient in terms of the memory footprint
as no arrays are required.

Resampling and measurements. The resampling process is also fully
handled on GPU. To determine the resampling factors τ̂i(Ej) of
Eq. (2), one first needs the normalization constant Qi of Eq. (1),
which equals the sum of all (unnormalized) resampling factors.
There are Ri summands, and the corresponding kernel QKer() is
called with Nthreads threads best chosen to equal the maximum
block size (1024 for current NVIDIA GPUs) and, correspondingly,
⌈Ri/Nthreads⌉ blocks. (Here, ⌈x⌉denotes the smallest integer that
is larger or equal to x, i.e., rounding up.) Within each block, we
use the standard parallel reduction method that adds elements
pairwise in several generations until only one element (the sum)
is left — a scheme that can be visualized as a binary tree [35].
This approach would typically store the intermediate results in
shared memory. On devices that support it, however, we find it
to be faster to use the ‘‘shuffle’’ operations that allow threads to
access registers from different threads in the same warp.4 As
threads from different blocks cannot directly communicate, the
sum of partial results of each thread block is typically determined
by an additional kernel invocation [29]. Alternatively, one can
make use of the atomicAdd() device function provided by CUDA
to complete the reduction in the same kernel call. Since for the
solution using atomicAdd() the order of summation is not well
defined, different runs with the same parameters and random
number seeds could potentially lead to slightly different values
of Qi (at the level of the floating-point precision). As this enters
the resampling part of the code, where the realized number of
copies depends on the comparison of a quantity involving Qi to a
random number according to Eq. (2), we cannot exclude that the
outcome depends on the unpredictable order of atomic operations
in somemarginal cases. To have a deterministic code that provably
simulates the same set of configurations in each runwith the same
parameters (including the random-number seed), we decided to
sum the per-block partial results for Qi in a subsequent kernel
call, thus making this part deterministic. For the calculation of
averages discussed below, we use the semantically simpler code
with atomicAdd(). A second kernel, CalcTauKer() is used with
the same execution configuration to determine the number of
copies of each replica to be created according to Eq. (2). Here,
another random number is used for each replica in the current
population to determine whether the number of copies is ⌊τ̂i(Ej)⌋
or ⌊τ̂i(Ej)⌋+ 1. To facilitate the parallel placement of new copies in
the vector storing the resampled population, we also calculate the
partial sums

∑k
j=1r

j
i , i.e., the offsets into that vector, again using the

same parallel reduction approach. This calculation is completed in
the kernel CalcParSum(). In the end, resampleKer() is used to
copy the selected individual replicas into the previously calculated
locations of the new population vector, using one thread per spin
in a tile of size EQthreads and a number of blocks that covers the
full population and each individual lattice with tiles.

Finally, measurements of the quantities of Eqs. (3)–(5) are
computed using a parallel reduction algorithm to first calculate

4 For the case of devices with compute capability≤3.0, where shuffle operations
are not available, we revert to a reduction with partial results stored in shared
memory.

346 L.Yu. Barash et al. / Computer Physics Communications 220 (2017) 341–350

the configurational energy and magnetization of each replica in
the kernel energyKer(). As only one block is assigned to each
replica in this case, no further reduction of block values is re-
quired here. Finally, another parallel reduction is used in the kernel
CalcAverages() to determine the population averages, employ-
ing atomicAdd() for the inter-block reduction.

Further optimization and parameters.Wenote that through the fluc-
tuations of Ri the execution configuration of the kernels changes
with each temperature step. For a fully loaded GPU this causes
only negligible variations in the total performance, however. An
important feature of the provided implementation is that all calcu-
lations are performed on GPU, so no significant memory transfers
to or from CPU occur during the PA run time. A number of further
optimizations have been employed to achieve good performance.
We request a larger L1 cache over shared memory using the
cudaDeviceSetCacheConfig() command as this turns out
to be beneficial for the memory accesses in the main
checkKerALL() kernel that does notmake use of sharedmemory.
There is a maximal number of threads that can be resident on a
multiprocessor at any given time, and in general it is found that
latency hiding works better the more threads are resident. This
occupancy of multiprocessors can be limited by the number of
available registers, however. Depending on the GPU employed,
it can be beneficial to request a maximum number of regis-
ters to be consumed per thread using the command-line option
--maxregcount of the nvcc compiler. The occupancy achieved
with a given setup and register usage can be determined using
the occupancy calculator spreadsheet that comes with the CUDA
distribution.

We provide here two separate codes, one for single-spin coding
and one formulti-spin coding (see below). The relevant parameters
such as R, θ , β0 and βf, as well as the number of runs M can be
specified either through constants (#defines) at the beginning of
the source code or through command-line arguments. There are
two GPU specific parameters, EQthreads and Nthreads, which
decide about the block size in the different kernels. These can be
adjusted by changing the values in the #defines in the source
code, but the default choices, EQthreads = 128 and Nthreads =

1024, are virtually always (near) optimal on modern cards. The
seed of the RNG can be changed by adapting RNGseed, and in the
default setup it is initialized using the system time.

The results of each run of the algorithm are stored in a separate
output file in text format. Each line of the output contains the
values β , e, C , m, m2, m4, βF/N , S/N , R, lnQ , i.e., the inverse tem-
perature, energy per site, specific heat, magnetization per site and
its moments, free energy density divided by temperature, entropy
per site, population size, and logarithm of partition function ratio,
respectively.

4. Multi-spin coding

It is clear from the general design principles for efficient GPU
code as discussed in Section 3 that a minimization of memory
transfers will often result in more efficient code. More specifically,
this will always be the case for code that is memory-bound, i.e., for
which themix ofmemory transactions and arithmetic operations is
such that the performance limiting factor is the latency and band-
width of memory transactions [29]. Since the Metropolis update
of the Ising model used in the equilibrating subroutine is arith-
metically very light, especially when using a precomputed table
for the exponential function, this is indeed the case for the present
application. Under these circumstances, any modification that re-
duces memory transfers can be expected to increase performance.
As an Ising spin is a single-bit variable, it is clear that storing it in
a standard built-in variable (even if it is of 8-bit length) is not ideal

Table 1
Speedup of MSC implementations of PA with p spins per word as compared to the
SSC version. The calculations were performed on a Tesla K80 card, but very similar
results are expected for other GPUs. The parameters of the simulations were L =

128, θ = 500, R = 80 000, and ∆β = 0.02. The spin update used nRNG random
numbers of the underlying generator (Philox) to decide about the acceptance of
flips of the p spins coded in a word. For the data in the last section an additional
linear congruential generator seeded by the underlying generator (Philox) is used
to generate p derived random numbers for the flipping of individual spins. The last
column indicates the increase in statistical errors (in the low-temperature phase)
through the re-use of random numbers [see also Fig. 2(c)].

p nRNG LCG Speedup σ 2
MSC(C)/σ

2
SSC(C)

8 8 NO 1.76 1
16 16 NO 1.73 1
32 32 NO 1.77 1
64 64 NO 1.72 1

8 1 NO 6.53 8
16 1 NO 10.44 16
32 1 NO 13.33 32
64 1 NO 9.23 64

8 1 YES 6.00 1
16 1 YES 8.73 1
32 1 YES 9.95 1
64 1 YES 7.92 1

and an explicit one-bit representation promises someperformance
improvement. This can be implemented using multi-spin coding
(MSC), i.e., by storing the states of p spin variables in a single
machine word of p bits [36]. Natural choices for the architecture
are p = 8, 16, 32 and 64.While for simulations of single systems as
discussed in Refs. [36,37] the spins represented by p bits in a word
correspond to different lattice sites (synchronous MSC), for the
present application it is more convenient to have the bits in a word
represent the spins on the same lattice site but in different replicas
(asynchronous MSC) [21,38]. Quite efficient bitwise operations are
available to implement a parallel Metropolis update of the spins
coded in a p-bit word. This approach has been extensively used in
simulations, in particular, of spin-glass models [23,38–41].

The resulting MSC variant of the code shows increased per-
formance over a single-spin coded (SSC) version, with an im-
provement that depends only weakly on the number of spins p
coded together. This is illustrated in the data in the first section of
Table 1, where a different random number is drawn using the base
generator for each of the p spins coded in a word, i.e., nRNG = p.
The relatively moderate and mostly p independent improvement
is a result of the fact that the time taken per spin update is in this
setup limited by the time it takes to generate the random numbers
used to decide about the acceptance of spin flips. A number of
implementations of this scheme for spin glasses [23,39,40] have
used the same randomnumber for deciding about flipping all of the
p spins in a word. This introduces some correlations, however, and
while it is argued that this effect is minor for spin-glass problems
due to the property of bond chaos in such systems [42], we expect
it to bemuchmore relevant for the case of the ferromagnet studied
here. If the same random numbers are used for deciding about
flips of the p spins coded together, this implies that these replicas
develop in a correlated manner. In particular, if (some of) these p
replicas have identical spin configurations as is the case if they are
copies of the same parent configuration in the resampling process,
they are coupled and remain identical for all future times. This
clearly interferes with the goal of fair sampling. To illustrate this
effect, we show in Fig. 2(a) the relative errors of the specific heat
of the 2D Ising model sampled with the MSC PA implementation
with p = 8, 16, 32 and 64 spins coded together, respectively, while
using the same randomnumbers to flip spins in all p replicas coded
together. As is clearly seen, the errors in this setup increase with p,
and a rescaling of the y axis reveals that σ (C)/C in fact increases
proportional to

√
p as expected from general statistical arguments

L.Yu. Barash et al. / Computer Physics Communications 220 (2017) 341–350 347

Fig. 2. (a) Relative error of estimates of the specific heat from PA runs for an L = 64
2D Ising system with θ = 100, ∆β = 0.002 and population size R = 10 000 using
asynchronous multi-spin coding (MSC) with p = 8, 16, 32 and 64 bits. The same
random numbers are used to decide about spin flips in all replicas coded in the
same words. (b) Relative error of the specific heat for p = 64 with nRNG = 64 and
for nRNG = 1with additional reordering of replicas andwith using different random
numbers for each replica coded in the same word, produced by an in-line linear
congruential generator (LCG) seeded by the main generator (Philox). The data for
this last variant and that of nRNG = 64 are practically indistinguishable. (c) Ratio of
the estimated variances σ 2(C) of the multi-spin coded (MSC) variants as compared
to the single-spin coded (SSC) reference implementation.

(not shown). On the other hand, the performance of this variant
using only one random number for p spins is found to be excellent,
cf. the data in the second section of Table 1. Note that here in
contrast to the casewith nRNG = p the speedup varies considerably
with p, and we find the best result for p = 32.

In an attempt to alleviate the correlation effect, we introduced
a rearrangement of replicas after resampling in such a way as to
avoid placing offspring of the same parent configuration in the
same word. This is achieved by the following procedure. If we
enumerate all replicas as k = 1, . . . , Ri, then for a given n, 0 ≤

n < ⌈Ri/p⌉, the spins of the replicas np + 1, np + 2, . . ., np + p are
originally stored in the same words. Or, equivalently, replicas with
the same value of ⌈k/p⌉ are stored in the same word. The popu-
lation is then rearranged such that replicas with the same value
of kmod ⌈Ri/p⌉ are stored in the same word, i.e., when initially
replicas 1, 2, . . ., p occupy the first word, this now contains replicas
1, ⌈Ri/p⌉+1, . . ., (p−1)⌈Ri/p⌉+1. This process can be pictured as
transposing a p × ⌈Ri/p⌉ matrix, followed by reshaping the result
to again occupy p rows. Unless a parent has more than ⌈Ri/p⌉
children (which is unlikely for sufficiently large populations), this
setup ensures that descendants from the same parent configu-
ration are placed in different words. As a result, their next spin
updates are governed by independent random number samples.
However, it is clear that at a lower temperature some of these
sibling replicas could again end up in the same machine word and
hence remain correlated. The behavior of statistical errors of the
resulting improved algorithm is illustrated in Fig. 2(b). It leads to a
slight reduction of the inflation of statistical errors against the non-
MSC implementation, but by no means removes it. Additionally,
the improvement appears to vanish for temperatures below the
transition point βc = ln(1 +

√
2)/2.

Amethod that provides high performance without compromis-
ing the statistical quality of data can be constructed by combining
the underlying RNG with a particularly fast in-line generator used
to supply the p randomnumbers used to flip the spins stored in the
same word. For this purpose, we use a simple linear-congruential
generator (LCG) of the form

rn+1 = Arn + C mod 232,

with A = 1 664 525 and C = 1 013 904 223 [43]. For each call to
the spin-updating kernel and eachword of p spins, this generator is
seeded by a call to the underlying, high-quality generator (Philox).
Although LCG generators are no longer recommended for general
purpose applications in simulations (see, e.g., Ref. [31] and refer-
ences therein), we believe that this does not cause any problems in
the present context as the LCG is only used to multiply a sample of
the underlying RNG and additionally the resampling is done with
the base RNG alone. Empirical testing confirms this assumption as
no biases or increases in statistical fluctuations are observed. The
corresponding results shown in Fig. 2(b) and (c) reveal that the
relative error for this approach is identical to that of simulations
using p samples from the base RNG. As the data in the last section
of Table 1 illustrate, the performance of this combined approach is
excellent, providing an about 10-fold speed-up of the simulations
with MSC and p = 32 as compared to the simulations with SSC
(both running on GPU).

5. Performance

In order to compare performance across different choices of the
algorithmic parameters R, θ and ∆β , we normalize the time for a
full PA run by the total number of spin flips performed,

tSF =
trun

L2θ
∑Nβ

i=1 Ri

, (11)

where Nβ denotes the number of temperature steps. We compare
the GPU codes proposed here to our reference CPU implemen-
tation which is an optimized scalar program, so only uses one
core. Instead of discussing the performance of a range of different
CPUs and GPUs, we here restrict ourselves to the GPUs and CPUs
available in an HPC cluster machine recently installed at the home
institution of one of us (Coventry University), which are Intel Xeon
E5-2683 v4 CPUs and NVIDIA Tesla K80 GPU cards, which should
be fairly representative of present-day HPC cluster configurations.
The K80 is a double card, of which only one card is actually used
for the measurements at a time, featuring 2880 cores and 12GB of

348 L.Yu. Barash et al. / Computer Physics Communications 220 (2017) 341–350

Table 2
Peak performance of the CPU and GPU PA implementations in units of the total run
time divided by the total number of spin flips performed, tSF , for different system
sizes. The best GPU performance is achieved for large θ , and here θ = 500 was
chosen for a population of R = 50 000 replicas. The speedups for the SSC and MSC
GPU codes are relative to the CPU results. GPU performance data are for the Tesla
K80. The CPU code was benchmarked on an Intel Xeon E5-2683 v4 CPU running at
2.1 GHz.

L CPU GPU

SSC MSC

tSF [ns] tSF [ns] Speedup tSF [ns] Speedup

16 23.1 0.094 246 0.0096 2406
32 22.9 0.092 249 0.0095 2410
64 22.6 0.092 246 0.0098 2306

128 22.6 0.097 233 0.0098 2306
256 22.5 0.098 230 0.0099 2273

Table 3
Times tSF per spin flip (in ns) for SSC and MSC GPU codes run on the Tesla K80 GPU
for a L = 128 system.

R

2000 10000 50000 100000

Single-spin coding (SSC)

1 0.229 0.213 0.213 0.213
5 0.123 0.119 0.119 0.120

10 0.111 0.108 0.107 0.109
θ 50 0.101 0.0994 0.0985 0.0987

100 0.0998 0.0976 0.0977 0.0975
200 0.0997 0.0972 0.0970 0.0970
500 0.0991 0.0971 0.0969 0.0969

Multi-spin coding (MSC)

1 0.2504 0.1439 0.1440 0.1543
5 0.0596 0.0372 0.0341 0.0341

10 0.0359 0.0240 0.0232 0.0234
θ 50 0.0168 0.0136 0.0123 0.0121

100 0.0144 0.0123 0.0110 0.0108
200 0.0132 0.0119 0.0103 0.0101
500 0.0125 0.0118 0.0098 0.0097

RAM.We note that we tested a variant of the CPU code parallelized
on a single CPU using OpenMP and found close to perfect parallel
scaling efficiency. A comparison to a parallel code for a particular
CPU can therefore be achieved by dividing the speedup factors
quoted here by the number of cores in the processor used.

In general, the best performance in terms of the metric (11) is
achievedwhenminimizing the frequency of resampling steps, such
that practically all time is invested in flipping spins. First, focusing
on this optimal case, we collect in Table 2 the times tSF for θ = 500
and a population size R = 50 000 for different system sizes. It is
seen that in the range 16 ≤ L ≤ 256 considered the performance
of all three codes is almost independent of system size. For the GPU
codes, this is an indication that through the replica parallelism and
the additional spin-parallelism there is enough parallel work to
saturate the device already for moderate system sizes. The single-
spin coded GPU code is found to be at least 230 times faster than
the CPU case. Themulti-spin codingwith p = 32 and the additional
combination with an LCG generator yields a further factor of 10,
resulting in a total peak speedup of the MSC code of about 2300 as
compared to the scalar program.

While the performance of the CPU code is almost independent
of θ and R in the ranges studied here, the speed of the GPU codes
varies significantly with these parameters, in particular with θ .
This is illustrated in Fig. 3,while the corresponding data is collected
in Table 3. For the SSC program, there is almost no dependence on
R in the range 2000 ≤ R ≤ 100 000 shown here, but for small
values of θ the times per spin flip increase by up to a factor of 2.4 as
compared to the optimal case, cf. Fig. 3(a). Hence, for the extreme
case of θ = 1, the speedup reduces to a factor of 100. For θ = 10, on

Fig. 3. (a) Time per spin flip tSF of the single-spin coded GPU and CPU codes as a
function of the number θ of equilibration sweeps relative to the time toptSF achieved
in the fastest case considered, namely for θ = 500. Thedifferent lines showdifferent
population sizes. (b) The same comparison for the multi-spin coded GPU code. The
reference line for CPU is again for the single-spin coded algorithm. All data are for
L = 128.

the other hand, which was typically used in previous applications
of the PA algorithm [8,11], the performance is only about 10%
below the optimum and the speedup is still approximately 200.
For the multi-spin coded program, this effect becomes even much
more pronounced as the time per spin flip is reduced by a factor
of 10, but the time taken for the resampling is not improved at
the same rate. Additionally, the proportion of time taken for the
sampling of observables increases significantly. As a consequence,
there is a rather strong θ dependence of the performance of the
MSC version, which is 15–20 times slower for θ = 1 than for
θ = 500, see the data shown in Fig. 3(b). In this extreme case,
the speedup is reduced to about 150, almost comparable to the
performance of the SSC program. For the choice θ = 10, on the
other hand, theMSC code still performs at 950 times the CPU code’s
speed, see also the data collected in the lower part of Table 3.

When discussing the optimization of the GPU code above,
we stated that most of the time in PA is spent on spin flips.
To see whether this is indeed the case, we calculated the frac-
tion of the total run time spent in the spin updating kernel
checkKerALL(). The corresponding data are collected in Table 4.
For the SSC program, the percentage of time spent updating spins
is indeed generally high, and exceeding 85% for θ ≥ 10. On the
other hand, for the minimal θ = 1 it drops to about 40%. For the
MSC version, the relative cost of resampling and measurements
of the energy and magnetization is much more significant, and a
fraction of 85% of time for spin flips is only reached for θ = 100,
see the lower part of Table 4. The CPU code, in contrast, spends 90%
of time on flipping spins even for θ = 1. These differences are a
consequence of the additional overhead resulting from the parallel

L.Yu. Barash et al. / Computer Physics Communications 220 (2017) 341–350 349

Table 4
The fraction of the total computing time spent in the spin-flip kernel
checkKerALL() of the SSC and MSC GPU codes for a L = 128 system simulated
on the Tesla K80 GPU.

R

2000 10000 50000 100000

Single-spin coding (SSC)

1 39.8% 41.8% 42.2% 42.2%
5 76.4% 77.9% 78.3% 78.3%

10 86.6% 87.6% 88.0% 87.9%
θ 50 97.0% 97.3% 97.4% 97.3%

100 98.5% 98.6% 98.7% 98.6%
200 99.2% 99.3% 99.3% 99.3%
500 99.7% 99.7% 99.7% 99.7%

Multi-spin coding (MSC)

1 5.3% 6.6% 5.9% 5.4%
5 20.6% 28.7% 25.1% 24.4%

10 33.9% 44.5% 37.3% 35.9%
θ 50 71.8% 80.0% 75.5% 76.1%

100 83.6% 89.0% 86.7% 86.3%
200 91.0% 94.1% 93.2% 92.9%
500 96.2% 97.8% 97.3% 97.1%

reductions for calculating Qi and the resampling factors τ̂i, as well
as copying replicas and measuring observable values. For the MSC
version of the code, there is the additional complication that for the
energy and magnetization calculation the individual spins need to
be unpacked from the bit-coded words, which is quite costly.

Nevertheless, it is crucial to move as much of the calculation
as possible onto GPU instead of possibly using a hybrid approach.
This is illustrated in Table 5, wherewe compare the performance in
terms of tSF for a variant that does the spin flips on GPU, but trans-
fers the population of replicas back to CPU for the implementation
of the resampling process. At least for small values of θ , this hybrid
version is significantly less performant. On the other hand, it is
conceptually simpler as it does not make use of parallel reductions
etc., so users could consider this simpler approach for simulations
where a large θ is used.

6. Conclusion

We have presented an efficient implementation of the pop-
ulation annealing algorithm on GPUs, using the 2D Ising model
as a benchmark problem. The code takes into account a range of
fundamental optimization heuristics for GPU computing, including
the principles of latency hiding and memory coalescence and thus
achieves peak speedups of more than 200 times above a reference
serial implementation on CPU. To create sufficient parallel work
for the GPU devices it turns out to be useful to combine the
replica-level parallelism with an additional domain decomposi-
tion, thus exploiting also spin-level parallelism. We also provide
here a multi-spin coded version of the program that yields peak
performances of more than 2000 times that of the serial, single-
spin coded variant. After completing the main work of this paper,
we had the opportunity of performing some test runs of our code
on a GeForce GTX 1080 GPU. As this is a Pascal generation card, it
promises some speedups compared to the Kepler board K80. For
L = 64, R = 50 000 and θ = 500 we find the peak performance
to be 36 ps for SSC and 4 ps for MSC, such that the maximal
speedup factors against the serial CPU code increase to 625 and
5650, respectively.

While we provide code for the 2D Ising ferromagnet, we hope
it to be used as a template for the simulation also of further
problems with the same algorithm. Generalizations for models
on different lattices in various dimensions, the case of different
couplings including spin glasses and random-field systems as well
as more general spin systems such as Potts [44] or O(n) models

Table 5
Time tSF per spin flip for a hybrid version of the SSC GPU code, where at each tem-
perature step the full population is copied between GPU and CPU to perform the
resampling as compared to the fully GPU-embedded standard version proposed
here. While for large values of θ both versions show similar performance, for small
θ the copying slows down the hybrid version significantly, a fact that is consistent
with the general observation [17] that fully GPU enabled code is almost always
preferable over hybrid solutions. Simulations are for L = 128 and R = 50 000 on
the NVIDIA Tesla K80.

tSF [ns]

θ 1 5 10 50 100 500

Standard 0.213 0.119 0.107 0.099 0.098 0.097
Hybrid 1.424 0.361 0.232 0.126 0.112 0.101

are straightforward. Applications to off-lattice systems [45] are
also straightforward conceptually, although the optimization of
the code in such cases might be a little bit more difficult.

Large populations can be simulated on standard GPUs. For the
present implementation, for L = 64 it is possible on the K80 GPUs
to simulate R = 1.5 × 106 replicas using the SSC variant and
R = 1.2 × 107 for the MSC version. It is worthwhile noting that
one can combine simulations to effectively achieve the precision
expected from a single run with the combined population size by
using the weighted averaging scheme as discussed in Section 2.2
[7,13]. Additionally, it should be possible to combine GPU paral-
lelization with MPI and run very large populations on a cluster of
GPU enabled nodes, and we expect population annealing to show
excellent scaling properties for such setups.

Acknowledgments

The work of L.B., M.B. and L.S. is supported by the grant
14-21-00158 from the Russian Science Foundation. M.B. was also
supported by the Scientific Grant Agency of the Ministry of Edu-
cation of the Slovak Republic (Grant No. 1/0331/15). The authors
acknowledge support from the European Commission through the
IRSES network DIONICOS under Contract No. PIRSES-GA-2013-
612707. The simulations were performed on the HPC facilities
of Coventry University and the Science Center in Chernogolovka.
M.W. acknowledges fruitful and pleasant discussions with Jon
Machta and Helmut Katzgraber on the subject of population an-
nealing.

References

[1] D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical
Physics, fourth ed., Cambridge University Press, Cambridge, 2015.

[2] I. Kosztin, B. Faber, K. Schulten, Amer. J. Phys. 64 (1996) 633.
[3] A. Doucet, N. de Freitas, N. Gordon (Eds.), Sequential Monte Carlo Methods in

Practice, Springer, New York, 2001.
[4] P. Grassberger, Comput. Phys. Comm. 147 (2002) 64.
[5] Y. Iba, Trans. Jpn. Soc. Artif. Intell. 16 (2001) 279–286.
[6] K. Hukushima, Y. Iba, AIP Conf. Proc. 690 (2003) 200–206.
[7] J. Machta, Phys. Rev. E 82 (2010) 026704.
[8] W. Wang, J. Machta, H.G. Katzgraber, Phys. Rev. B 90 (2014) 184412.
[9] W. Wang, J. Machta, H.G. Katzgraber, Phys. Rev. E 92 (2015) 063307.

[10] W. Wang, J. Machta, H.G. Katzgraber, Phys. Rev. B 92 (2015) 094410.
[11] W. Wang, J. Machta, H.G. Katzgraber, Phys. Rev. E 92 (2015) 013303.
[12] M. Borovský, M. Weigel, L.Yu. Barash, M. Žukovič, EPJ Web Conf. 108 (2016)

02016.
[13] M. Weigel, L.Yu. Barash, M. Borovský, L.N. Shchur, W. Janke, in preparation.
[14] G.E. Moore, Electronics 38 (1965) 114.
[15] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer, D.A.

Patterson, W.L. Plishker, J. Shalf, S.W. Williams, K.A. Yelick, The Landscape of
Parallel Computing Research: A View from Berkeley, Tech. Rep., Technical Re-
port UCB/EECS-2006-183, EECSDepartment, University of California, Berkeley,
2006.

[16] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, J.C. Phillips, Proc. IEEE
96 (2008) 879–899.

[17] W.W. Hwu (Ed.), GPU Computing Gems: Emerald Edition, Morgan Kaufmann,
Amsterdam, 2011.

http://refhub.elsevier.com/S0010-4655(17)30202-3/sb1
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb1
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb1
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb2
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb3
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb3
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb3
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb4
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb5
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb6
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb7
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb8
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb9
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb10
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb11
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb12
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb12
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb12
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb14
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb15
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb15
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb15
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb15
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb15
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb15
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb15
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb15
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb15
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb16
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb16
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb16
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb17
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb17
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb17

350 L.Yu. Barash et al. / Computer Physics Communications 220 (2017) 341–350

[18] T. Preis, P. Virnau, W. Paul, J.J. Schneider, J. Comput. Phys. 228 (2009) 4468.
[19] M. Weigel, Comput. Phys. Comm. 182 (2011) 1833–1836.
[20] M. Weigel, Phys. Rev. E 84 (2011) 036709.
[21] M. Weigel, J. Comput. Phys. 231 (2012) 3064–3082.
[22] T. Yavors’kii, M. Weigel, Eur. Phys. J. Spec. Top. 210 (2012) 159.
[23] M. Lulli, M. Bernaschi, G. Parisi, Comput. Phys. Comm. 196 (2015) 290–303.
[24] C.A. Navarro, W. Huang, Y. Deng, Comput. Phys. Comm. 205 (2016) 48–60.
[25] E.E. Ferrero, J.P. De Francesco, N. Wolovick, S.A. Cannas, Comput. Phys. Comm.

183 (2012) 1578–1587.
[26] J. Gross,W. Janke,M. Bachmann, Comput. Phys. Comm. 182 (2011) 1638–1644.
[27] A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 63 (1989) 1195.
[28] B.M. McCoy, T.T. Wu, The Two-Dimensional Ising Model, Harvard University

Press, Massachusetts, 1973.
[29] D.B. Kirk, W.W. Hwu, Programming Massively Parallel Processors, Elsevier,

Amsterdam, 2010.
[30] J. Gross, J. Zierenberg, M. Weigel, W. Janke, Massively parallel multicanonical

simulations, Preprint arXiv:1707.00919.
[31] M. Manssen, M. Weigel, A.K. Hartmann, Eur. Phys. J. Spec. Top. 210 (2012) 53.
[32] L.Yu. Barash, L.N. Shchur, Comput. Phys. Comm. 185 (2014) 1343–1353.
[33] J.K. Salmon, M.A. Moraes, R.O. Dror, D.E. Shaw, Proceedings of 2011 Interna-

tional Conference for High Performance Computing, Networking, Storage and
Analysis, SC’11, ACM, New York, NY, USA, 2011.

[34] P. L’Ecuyer, R. Simard, ACM Trans. Math. Software 33 (2007) 22.

[35] M. McCool, J. Reinders, A. Robison, Structured Parallel Programming: Patterns
for Efficient Computation, Morgan Kaufman, Waltham, MA, 2012.

[36] R. Zorn, H.J. Herrmann, C. Rebbi, Comput. Phys. Comm. 23 (1981) 337–342.
[37] N. Ito, Y. Kanada, Proceedings of the 1990 ACM/IEEE Conference on Supercom-

puting, IEEE Computer Society Press, 1990, pp. 753–763.
[38] F. Belletti, M. Cotallo, A. Cruz, L.A. Fernández, A.G. Guerrero, M. Guidetti, A.

Maiorano, F. Mantovani, E. Marinari, V. Martín-Mayor, A. Muñoz Sudupe, D.
Navarro, G. Parisi, S.P. Gaviro, M. Rossi, J.J. Ruiz-Lorenzo, S.F. Schifano, D.
Sciretti, A. Tarancón, R.L. Tripiccione, Comput. Sci. Eng. 11 (2009) 48–58.

[39] M.Hasenbusch, A. Pelissetto, E. Vicari, J. Stat.Mech. Theory Exp. (2008) L02001.
[40] Y. Fang, S. Feng, K.-M. Tam, Z. Yun, J. Moreno, J. Ramanujam,M. Jarrell, Comput.

Phys. Comm. 185 (2014) 2467–2478.
[41] L.A. Fernández, E. Marinari, V. Martín-Mayor, G. Parisi, J.J. Ruiz-Lorenzo, Phys.

Rev. B 94 (2016) 024402.
[42] A.J. Bray, M.A. Moore, Phys. Rev. Lett. 58 (1987) 57–60.
[43] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes:

The Art of Scientific Computing, third ed., Cambridge University Press,
Cambridge, 2007.

[44] L.Yu. Barash, M. Weigel, L.N. Shchur, W. Janke, Eur. Phys. J. Spec. Top. 226
(2017) 595.

[45] J. Callaham, J. Machta, Phys. Rev. E 95 (2017) 063315.

http://refhub.elsevier.com/S0010-4655(17)30202-3/sb18
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb19
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb20
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb21
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb22
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb23
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb24
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb25
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb25
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb25
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb26
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb27
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb28
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb28
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb28
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb29
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb29
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb29
http://arxiv.org/1707.00919
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb31
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb32
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb33
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb33
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb33
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb33
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb33
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb34
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb35
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb35
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb35
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb36
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb37
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb37
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb37
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb38
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb38
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb38
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb38
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb38
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb38
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb38
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb39
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb40
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb40
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb40
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb41
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb41
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb41
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb42
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb43
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb43
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb43
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb43
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb43
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb44
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb44
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb44
http://refhub.elsevier.com/S0010-4655(17)30202-3/sb45

	GPU accelerated population annealing algorithm
	Introduction
	Algorithm
	Population annealing
	Weighted averages
	Adaptive temperature steps
	Multi-histogram reweighting

	GPU realization
	Multi-spin coding
	Performance
	Conclusion
	Acknowledgments
	References

