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We study the phase transition of the three-dimensional complex |ψ|4 theory by considering the
geometrically defined vortex-loop network as well as the magnetic properties of the system in
the vicinity of the critical point. Using high-precision Monte Carlo techniques we examine an
alternative formulation of the geometrical excitations in relation to the global O(2)-symmetry
breaking, and check if both of them exhibit the same critical behavior leading to the same critical
exponents and therefore to a consistent description of the phase transition. Different percolation
observables are taken into account and compared with each other. We find that different defini-
tions of constructing the vortex-loop network lead to different results in the thermodynamic limit,
and the percolation thresholds do not coincide with the thermodynamic phase transition point.
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Three-dimensional, globally O(2) symmetric spin models and field theories exhibit line-like
topological excitations which form closed networks. An issue of central importance is the question
whether the distribution of these vortex lines and their percolation properties do indeed encode
the critical exponents of the thermodynamically defined phase transition. More specifically, the
question we want to address in this paper is: Is there a similar clue in the case of vortex networks
as for spin clusters, or do they display different features? Percolational studies of spin clusters
showed that the geometric approach only works, if one uses a proper stochastic (Fortuin-Kasteleyn)
definition of clusters [1, 2, 3, 4]. When connecting the vortex line elements to closed loops, which
similar to spin clusters are geometrically defined objects, and a branching point with n≥ 2 junctions
is encountered, a decision on how to continue has to be made. This step involves a certain ambiguity
and gives room for a stochastic definition. In particular we want to investigate the influence of the
probability of treating such a branching point as a knot.

In this paper we concentrate on the three-dimensional (3D) complex Ginzburg-Landau model,
the field theoretical representative of the O(2) universality class, with normalized lattice Hamilto-
nian

H[ψ] =
N

∑
n=1

[σ
2

(|ψn|
2 −1)2 +

1
2

d

∑
µ=1

|ψn −ψn+µ |
2
]

, (1)

where ψn = ψn,x + iψn,y = |ψn|eiφn is a complex field and σ is a temperature independent parameter.
µ denotes the unit vectors along the d coordinate axes, N = Ld is the total number of sites, and an
unimportant constant term has been dropped. The partition function reads

Z =
∫

DψDψ̄ e−H/T , (2)

where
∫

Dψ Dψ̄ ≡
∫

DReψ D Imψ stands short for integrating over all possible complex field con-
figurations. In the limit of a large parameter σ , it is easy to read off from Eq. (1) that the modulus
of the field is squeezed onto unity such that the XY model limit is approached with its well-known
continuous phase transition in 3D at Tc = 1/βc ≈ 2.2 [5].

In order to characterize the transition we performed Monte Carlo simulations and measured
among other quantities the energy 〈H〉, the specific heat cv = (〈H2〉− 〈H〉2)/N, the mean-square
amplitude 〈|ψ|2〉 = (1/N)∑N

n=1〈|ψn|
2〉, and the magnetization 〈M〉 = ∑N

n=1〈ψn〉. The main focus
of this paper is on the properties of the geometrically defined vortex-loop network. The standard
procedure to calculate the vorticity on each plaquette is by considering the quantity

m =
1

2π
([φ1 −φ2]2π +[φ2 −φ3]2π +[φ3 −φ4]2π +[φ4 −φ1]2π) , (3)

where φ1, . . . ,φ4 are the phases at the corners of a plaquette labelled, say, according to the right-
hand rule, and [α]2π stands for α modulo 2π: [α]2π = α + 2πn, with n an integer such that α +

2πn ∈ (−π,π], hence m = n12 +n23 +n34 +n41. If m 6= 0, there exists a topological charge which
is assigned to the object dual to the given plaquette, i.e., the (oriented) line elements ∗lµ which
combine to form closed networks (“vortex loops”). With this definition, the vortex “currents” ∗lµ

can take three values: 0,±1 (the values ±2 have a negligible probability and higher values are
impossible). The quantity v = 1

N ∑n,µ |∗lµ,n| serves as a measure of the vortex-line density.
In order to study percolation observables we connect the obtained vortex line elements to

closed loops. Following a single line, there is evidently no difficulty, but when a branching point,
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where n ≥ 2 junctions are encountered, is reached, a decision on how to continue has to be made.
If we connect all in- and outgoing line elements, knots will be formed. Another choice is to join
only one incoming with one outgoing line element, with the outgoing direction chosen randomly.
We will employ two “connectivity” definitions here:

• “Maximal” rule: At all branching points, we connect all line elements, such that the maximal
loop length is achieved. That means each branching point is treated as a knot.

• “Stochastic” rule: At a branching point where n ≥ 2 junctions are encountered, we draw a
uniformly distributed random number ∈ (0,1] and if this number is smaller than the con-
nectivity parameter c we identify this branching point as a knot of the loop, i.e., only with
probability 0≤ c≤ 1 a branching point is treated as a knot. In this way we can systematically
interpolate between the maximal rule for c = 1 and the case c = 0, which corresponds to the
procedure most commonly followed in the literature [6].

We can thus extract from each lattice configuration a set of vortex loops, which have been
glued together by one of the connectivity definitions above. For each loop in the network, we
measure, among others [7], the following observables:

• “Extent” of a vortex loop in 1, 2, or 3 dimensions, O1D,O2D, and O3D: This means simply
to project the loop onto the three axes and record whether the projection covers the whole
axis, or to be more concrete, whether one finds a vortex-line element of the loop in all planes
perpendicular to the eyed axis. This quantity can thus be interpreted as percolation probabil-
ity [8] which is a convenient quantity for locating the percolation threshold βp.

• “Susceptibilities”, χi: For the vortex-line density v and any of the observables Oi defined
above, one can use its variance to define the associated susceptibility, χi = N(〈O2

i 〉−〈Oi〉
2),

which is expected to signal critical fluctuations.

To update the direction of the field [9], we employed the single-cluster algorithm [10] similar to
simulations of the XY spin model [5]. The modulus of ψ was updated with a Metropolis algorithm.
Here some care was necessary to treat the measure in (2) properly (see Ref. [11]). One sweep
consisted of N spin flips with the Metropolis algorithm and Nsc single-cluster updates. For all
simulations the number of cluster updates was chosen roughly proportional to the linear lattice
size, Nsc ' L, a standard choice for 3D systems as suggested by a simple finite-size scaling (FSS)
argument. We performed simulations for lattices with linear lattice size ranging from L = 6 up
to L = 40, subject to periodic boundary conditions. After an initial equilibration time of 20000
sweeps we took about 100000 measurements, with ten sweeps between the measurements. All
error bars are computed with the Jackknife method.

In order to be able to compare standard, thermodynamically obtained results (working directly
with the original field variables) with the percolative treatment of the geometrically defined vortex-
loop networks considered here, we used the same value for the parameter σ = 1.5 as in Ref. [12]
for which we determined by means of standard FSS analyses of the magnetic susceptibility and
various (logarithmic) derivatives of the magnetization a critical coupling of

βc = 0.78008(4) . (4)
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Table 1: The critical exponents of the 3D XY model universality class as reported in Ref. [13] and the
correction-to-scaling exponent ω of Ref. [9].

α β γ δ η ν ω
−0.0146(8) 0.3485(2) 1.3177(5) 4.780(2) 0.0380(4) 0.67155(27) 0.79(2)

Focussing here on the vortex loops, we performed new simulations at this thermodynamically
determined critical value, β = 0.78008, as well as additional simulations at β = 0.79, 0.80, and
0.81. The latter β values were necessary because of the spreading of the pseudo-critical points of
the vortex loop related quantities. As previously we recorded the time series of H, M, |ψ|, and
|ψ|2, as well as the helicity modulus Γµ and the vorticity v. In the present simulations, however,
we saved in addition also the field configurations in each measurement. This enabled us to perform
the time-consuming analyses of the vortex-loop networks after finishing the simulations and thus
to systematically vary the connectivity parameter c of the knots.

The FSS ansatz for the pseudo-critical inverse temperatures βi(L), defined as the points where
the various χi are maximal, is taken as usual as

βi(L) = βi,c + c1L−1/ν + c2L−1/ν−ω + . . . , (5)

where βi,c denotes the infinite-volume limit, and ν and ω are the correlation length and confluent
correction critical exponents, respectively. Here we have deliberately retained the subscript i on
βi,c.

Let us start with the susceptibility χv of the vortex-line density, which plays a special role
in that it is locally defined, i.e., does not require a decomposition into individual vortex loops.
Assuming XY model values for ν and ω (cf. Table 1) and fitting only the coefficients βi,c and ci,
we arrive at the estimate βv,c = 0.7797(14) with a goodness-of-fit parameter Q = 0.20. This value
is perfectly consistent with the previously obtained “thermodynamic” result (4). On the basis of
this result one would indeed conclude that the phase transition in the 3D complex Ginzburg-Landau
field theory can be explained in terms of vortex-line proliferation [14].

To develop a purely geometric picture of the mechanism governing this transition, however,
one should be more ambitious and also consider the various quantities Oi introduced above that
focus on the percolative properties of the vortex-loop network. As an example for the various
susceptibilities considered, we show in Fig. 1(a) the susceptibility χ3D of O3D for c = 0 and c = 1.
The scaling behavior of the maxima locations β3D(L) of the susceptibility χ3D of O3D for c = 0 and
c = 1 is depicted in Fig. 1(b), where the lines indicate fits according to Eq. (5) with exponents fixed
again according to Table 1. We obtain β3D,c = 0.7824(1) with χ2/dof = 1.14 (Q = 0.32,L ≥ 8)

for c = 0 and β3D,c = 0.8042(4) with χ2/dof = 0.75 (Q = 0.58,L ≥ 20) for c = 1. While for the
“stochastic” rule with c = 0 the infinite-volume limit of β3D(L) is at least close to βc, it is clearly
significantly larger than βc for the fully knotted vortex networks with c = 1.

By repeating the fits for all vortex-network observables and the parameter c between 0 and
1 in steps of 0.1, we observed that the location of the infinite-volume limit βi,c does depend on
the connectivity parameter c used in constructing the vortex loops in a statistically significant way.
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Figure 1: (a) Susceptibility χ3D of O3D as a function of β for the “stochastic” (c = 0) and the “maximal”
(c = 1) rule. (b) Location of the percolation thresholds determined from the maximum of χ3D as a function
of L−1/ν . The lines indicate fits using the FSS ansatz (5) with ν and ω fixed according to Table 1. The
horizontal dashed line shows the thermodynamically determined critical coupling βc = 0.78008(4).

With decreasing c, the infinite-volume extrapolations come closer towards the thermodynamical
critical value (4), but even for c = 0 they clearly do not coincide.

We nevertheless performed tests whether at least for c = 0 the critical behavior of the vortex-
loop network may consistently be described by the 3D XY model universality class. As an example
for a quantity that is a priori expected to behave as a percolation probability we picked the quantity
O3D. As is demonstrated in Fig. 2(a) for the case c = 0, by plotting the raw data of O3D as a function
of β for the various lattice sizes, one obtains a clear crossing point so that the interpretation of O3D

as percolation probability is nicely confirmed. To test the scaling behavior we rescaled the raw
data in the FSS master plot shown in Fig. 2(b), where the critical exponent ν has the XY model
value given in Table 1 and βc(O3D) = 0.7842 was independently determined by optimizing the data
collapse, i.e., virtually this is the location of the crossing point in Fig. 2(a). The collapse turns out
to be quite sharp. For c > 0 we found also a sharp data collapse, but for a monotonically increasing
exponent ν , which is for large c values compatible with the critical exponent ν = 0.8765(16) of
3D percolation [15]. One should keep in mind, however, that neither β3D,c as extrapolated from
the susceptibility peaks nor the estimate obtained from the crossing point in Fig. 2(a) is compatible
with βc.

To summarize, we have found for the 3D complex Ginzburg-Landau field theory that the geo-
metrically defined percolation transition of the vortex-loop network is close to the thermodynamic
phase transition, but does not quite coincide with it for any observable we have considered. Our
results for the connectivity parameter c ∈ [0,1] extend the claim of Ref. [6] for the 3D XY spin
model that neither the “maximal” (c = 1) nor the “stochastic” rule (c = 0) used for constructing
macroscopic vortex loops does reflect the properties of the true phase transition in a strict sense. A
more detailed presentation of these and additionally results for several other observables is given
in Ref. [7].
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Figure 2: (a) O3D as function of β for c = 0. (b) Rescaled data with ν fixed at the 3D XY model value
(cf. Table 1) and choosing βc(O3D) = 0.7842 from the location of the crossing point in (a) for the best data
collapse.
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