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Abstract. We present a simple non-equilibrium model of mass condensation 
with Lennard–Jones interactions between particles and the substrate. We show 
that when some number of particles is deposited onto the surface and the system 
is left to equilibrate, particles condense into an island if the density of particles 
becomes higher than some critical density. We illustrate this with numerically 
obtained phase diagrams for three-dimensional systems. We also solve a two-
dimensional counterpart of this model analytically and show that not only the 
phase diagram but also the shape of the cross-sections of three-dimensional 
condensates qualitatively matches the two-dimensional predictions. Lastly, we 
show that when particles are being deposited with a constant rate, the system 
has two phases: a single condensate for low deposition rates, and multiple 
condensates for fast deposition. The behaviour of our model is thus similar to 
that of thin film growth processes, and in particular to Stranski–Krastanov 
growth.
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1. Introduction

Non-equilibrium statistical mechanics has witnessed a rapid progress in recent years, 
and has been applied to a variety of problems in physics, chemistry, biology, economy, 
and social sciences. However, in contrast to equilibrium systems, which can be conve-
niently studied by using the concept of the statistical ensemble, a unified theoretical 
framework applicable to all non-equilibrium systems does not exist, and whether such 
a framework will eventually emerge remains to be seen.

Despite that, significant progress has been made in the last two decades for a class 
of models called driven diffusive systems [1] which—even though being far from equi-
librium—can be studied within the same statistical ensemble framework as equilibrium 
models. These models share a common feature: the steady-state probability of a micro-
state can be expressed analytically as a function of transition rates which define the 
dynamics of the model. Examples of such systems are the zero-range process (ZRP) 
[2–4], closely related to its equilibrium counterpart: balls-in-boxes model (B-in-B) [5], 

Contents

1. Introduction 2

2. The model 3

3. Numerical results for the (2   +   1)d model 6

3.1. Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2. Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4. Analytically soluble (1   +   1)d model 11

4.1. Solution for σ ≪ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2. Solution for σ ≫ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3. Double-delta approximation of the potential . . . . . . . . . . . . . . . . . . . 15

4.4. Shape of the condensate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5. Deposition of new particles with constant rate 18

6. Conclusions 20

Acknowledgments 21

Appendix A. Typical values of σ for thin-layer growth 22

Appendix B. Computer simulations 22

Appendix C. Critical density 23

References 24



A simple non-equilibrium, statistical-physics toy model of thin-film growth

3doi:10.1088/1742-5468/2015/09/P09013

J
. S

ta
t. M

e
c
h
. (2

0
1
5
) P

0
9
0
1
3

the asymmetric simple exclusion process (ASEP) [6] and its totally asymmetric version 
(TASEP) [7], asymmetric inclusion process (ASIP) [8–10] and many variants of these 
two models [11–15]. In all these models, particles jump between sites of a one- or higher-
dimensional lattice and the dynamics is defined by specifying the hopping rates of the 
particles. The hopping rates are usually chosen so that there is a non-zero, macroscopic 
current of particles through the system driving it far from equilibrium, although the sys-
tem often exhibits a non-equilibrium steady state independent of the initial condition.

In this paper, we study an extension of the zero-range process to nearest-neighbour 
interactions, similar to that of [16, 17]. In this model, particles interact when they are at the 
same site or at neighbouring sites. Although the model can be driven far from equilibrium, 
it is closely related to the equilibrium solid-on-solid (SOS) model [18–20]. A remarkable fea-
ture of this stochastic process is that the steady state factorises over pairs of neighbouring 
sites, also in dimensions higher than one, and thus we call it the pair-factorised steady state 
process (PFSS). This property facilitates analytical calculations in the one-dimensional ver-
sion of the model, and in certain cases also in more than one dimension [21].

Contrary to previous works which focused on generic properties of this model such 
as the existence of condensation [16, 22], the shape of the condensate [17], or generali-
sation to more complicated graphs [21], we revisit here the original foundation of this 
model coming from solid-state physics, and choose a hopping rate which leads to the 
emergence of clusters of particles similar to the extended atomic islands known from 
non-equilibrium nanostructure formation [23] and epitaxial thin film growth [24]. In 
these processes, a film of atoms is deposited on a substrate that serves as a template. 
One of three generic modes of epitaxial thin film growth [25]—Stranski–Krastanov 
growth—has attracted considerable attention as it can be used, for example, to produce 
quantum dots [26, 27]. In Stranski–Krastanov growth, deposited atoms form initially 
a flat, 2d layer. As the density of atoms on the substrate increases beyond a certain 
critical thickness, atomic islands start to nucleate as shown schematically in figure 1.

In this paper, we propose a simple, analytically tractable non-equilibrium toy model 
that mimics the 2d-to-3d transition observed in Stranski–Krastanov growth. In our 
model, we do not aim at reproducing all details of thin film growth (e.g. there is no 
mismatch between the substrate and adsorbate lattices) but we rather explore generic 
mechanisms that lead to island formation in non-equilibrium systems that mimic those 
of Stranski–Krastanov mode of growth. In particular, we show that by changing the 
strength of interactions between particles one can obtain different island shapes, simi-
larly to what is seen in experiments. We also show that the shape is quite robust 
and does not change much when the system is pushed far from equilibrium either by 
imposing a macroscopic current of particles in one direction (as in electromigration on 
surfaces [28]), or by adding new particles to the system at a constant rate (the latter 
process imitating molecular beam epitaxy [24]).

2. The model

The model that we study in this work comprises a two-dimensional, regular lattice 
with = ×N L L sites and periodic boundary conditions in both directions. Let {mi} be 
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the number of particles at sites = …i N1, , . The particles can be viewed as ‘adatoms’ 
attached to the surface of the substrate where the number mi corresponds to the height 
(in the third dimension) of a stack of atoms at site i. We first consider the case when 
M particles have been deposited on the substrate and no further particles are being 
added, thus the number of particles is constant and equal to M. We shall later relax 
this assumption.

To model the dynamics of particles due to thermal excitations and external driving 
(e.g. electromigration), we assume the following rate at which a particle jumps out of 
site i:

∏=
−

u
g m m

g m m

( 1, )

( , )
,i

i j

i j

i j,⟨ ⟩
 (1)

where i j,⟨ ⟩ denotes all four nearest neighbours of site i and g(m, n) is a symmetric 
non-negative function to be specified later. The jump rate depends on the number of 
particles at i and at its nearest neighbours, and by a suitable choice of g(m, n) we can 
replicate interactions between particles at neighbouring sites. The particle then hops to 
one of the neighbours with probabilities {rk} for k   =   1 (right), 2 (left), 3 (top), and 4 
(bottom). The above choice of ui is dictated by the requirement that the steady-state 
microstate probability assumes the following factorized form [22],

∏ ∑δ… =







−







=

P m m
Z

g m m m M( , , )
1

( , ) ,N

i j

i j

i

N

i1

, 1⟨ ⟩

 (2)

where the probability factorises over pairs of neighbouring sites, the Kronecker delta 
δ k[ ] (equal to 1 if k   =   0) ensures that the total number of particles M is conserved, and Z 
is a normalisation constant giving (2) a valid probabilistic interpretation. Factorisation 
allows us to analyse the statics of the model using standard tools of statistical mechan-
ics. Identifying …P m m( , , )N1  with the Boltzmann distribution β−Z E(1/ ) exp( ) with the 
inverse temperature β = 1, we obtain the energy of the microstate

Figure 1. Schematic stages of Stranski–Krastanov growth. Adatoms (blue 
spheres) are deposited on the substrate (purple spheres) until a desired density is 
reached. (a) Low density—an incomplete monolayer is formed. (b) As the density 
of adatoms increases, the adatoms form a complete monolayer and a partially filled 
second layer. (c) Upon further density increase, islands of variable height begin to 
form on the monolayer. Here the critical density of adatoms above which islands 
occur equals one adatom per one substrate site. The critical thickness depends on 
the mismatch between the substrate and adsorbate lattices, which is, however, not 
modelled explicitly in this paper.
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∑… = −E m m g m m( , , ) ln ( , ).N

i j

i j1

,⟨ ⟩
 (3)

Even though the system is in general out of equilibrium, the steady state is inde-
pendent of the jump probabilities {rk}, and many steady-state quantities can be cal-
culated as if the system was in equilibrium, with the microstate probability given by 
equation (2). The choice of the probabilities {rk} determines how far the system is from 
equilibrium; for example, for {rk}   =   {1/3, 0, 1/3, 1/3} particles jump asymmetrically 
from left to right, which generates a macroscopic current of particles in this direction, 
whereas for {rk}   =   {1/4, 1/4, 1/4, 1/4} the jumps are fully symmetric, the net current 
of particles is zero, and the system is at equilibrium.

We also consider a (1   +   1)d counterpart of this model, in which particles jump to 
the right or left on a one-dimensional substrate, and the simplified form of the hopping 
rate equation (1) is

| =
− −

+ −
−

−

+

+

u m m m
g m m

g m m
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The corresponding microstate probability then reads

∏ ∑δ… =
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 (5)

Similarly to the (2   +   1)d model, the probability = =r r 1/21 2  corresponds to the 
system in thermal equilibrium, whereas for = =r r1, 01 2  the particles can jump only 
to the right as in [16].

The model described above has been studied for a number of choices of g(m, n) 
in one dimension [16, 17], and less extensively in two dimensions [21] and, given that 
g(m, n) fulfils certain criteria, the model is known to have a phase transition between 
a liquid and a condensed state as the density of particles crosses a threshold density. 
Depending on the choice of g(m, n), the condensate can be either localised at a single 
site as in the ZRP, or can be spatially extended over many sites [17, 29].

In this paper, we aim to reproduce qualitatively the phenomenology of surface 
growth. We therefore assume the energy of a configuration …m m( , , )N1  to be

∑ ∑
σ σ

= | − |+
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which is equivalent to the following two-point symmetric weight function g(m, n):

=





− | − |− +
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where V(m) is the on-site potential
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The term proportional to J in the above expression represents the energy cost of 
‘broken bonds’ between neighbouring, vertical stacks of adatoms, whereas the term 
proportional to U accounts for interactions between adatoms and the substrate, see fig-
ure 2. We assume the latter to be described by the Lennard–Jones (LJ) potential, with 
a unity added to the denominator to make the expression finite for m   =   0. Equation (8) 
is relevant to interactions of molecules with a crystalline surface [30, 31], and the expo-
nents 9 and 3 arise from integrating the 12–6 LJ potential over the substrate surface4.

The model has three parameters that are related to adatom-substrate interactions: 

U, J and σ. Large J suppresses, through | − |m mi j , rapid variations in the height of 
neighbouring stacks i j,⟨ ⟩ of adatoms, and flattens out the surface; large U makes the 
adatoms bind stronger to the substrate; σ has the interpretation of the interaction 
range between the adatoms and the surface, measured in the units of the lattice con-
stant. Figure 3(a) shows how the potential V(m) behaves for different values of the 
parameter σ, for U   =   1/2. Although our model only serves as heuristic means, the val-
ues of σ we use throughout the paper ( σ<0 3⩽ ) fall in the range typically encountered 
in Stranski–Krastanov growth, see appendix A.

3. Numerical results for the (2   +   1)d model

In this section we discuss steady-state properties of the (2   +   1)d model with fixed num-
ber of particles. Since all quantities discussed here depend only on g(m, n) through the 
steady-state probability (2) and not on transition probabilities between the states of 
the system, we took the liberty of using a Monte Carlo algorithm (for more details, see 
appendix B) to simulate the (2   +   1)d model on a computer. This approach, unsuitable 
for dynamic quantities such as the average current, is much better suited for simulations 

Figure 2. When a particle jumps to a neighbouring site with rate (4), the energy 
of the system changes. Left: a particle merging with a two-particle island reduces 

the number of height differences (‘broken bonds’) ∑ | − |+m m
i i i 1  by two; right: a 

particle hopping onto a neighbouring stack of adatoms changes the value of the 
on-site potential V(m). For σ = > >J U1, 0, 0 both depicted energy changes are 
negative, ∆ <E 0, hence these transitions are more likely than the moves in the 
opposite direction.

4 The model can be easily extended to other choices of the potential, including other exponents, and will exhibit 
qualitatively the same behaviour. 
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of large systems due to its significant speed gain over the dynamics described by 
equation (1).

Figure 4 shows steady-state snapshots of the system for different surface densities 

ρ = M L/ 2, fixed U, J, and for two different σ = 1, 3. For σ = 1, increasing the density 

ρ produces first a flat, irregular droplet of height m   =   1 and size increasing with ρ; 
then, above a certain critical density ρc, a hemi-spherical island—which we shall call 
the condensate—begins to form on the surface. The height of the condensate increases 
with ρ, while the height of the surface remains constant and equal to one. The situation 
looks similar for σ = 3 except that the condensate forms on a layer of three particles 
thick. The snapshots suggest that the critical density for condensation is approximately 
equal to σ, the range of the LJ potential. Indeed, simulations made for σU J, ,  as in 
figure 4 and for a range of densities ρ = …1, , 7 show that ρ = ±1.0135 0.0013c  for σ = 1 
and ρ = ±3.068 0.023c  for σ = 3 (see appendix C). The values of ρc remain very close to 
σ⌊ ⌋ (i.e. the floor of σ), which indicates that, for U large enough, the critical density is 
very close to the density of particles necessary to populate the first σ⌊ ⌋ layers above the 

Figure 3. (a) Examples of the on-site potential V(m) of equation (8) for U   =   1/2. 
(b) Approximate potentials for σ = 0.5, 1, and 2.5 constructed from one (dashed 
lines) or two (continuous line) delta functions; see section 4.1–4.3. The plots have 
been vertically shifted for clarity; black horizontal lines mark the zero energy level 
in each case.
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substrate. We shall see in section 4 that this is also true for the analytically solvable 
(1   +   1)d model.

3.1. Phase diagram

To explore the effect of J, U, and σ, we have made simulations for fixed density ρ while 
varying σJ U, , . Figure 5 shows a pictorial representation of the U, J-phase diagram, for 
σ = 1. The density of particles is ρ = 3. The upper right corner of the diagram (large 
positive U, J ) corresponds to the parameter region where particles condense into islands, 
and the bottom left (small J and negative U ) to the region where only a fluctuating 
‘wetting layer’ can be observed. At the transition region between the condensate and 
the wetting-layer phase vertical or horizontal ‘stripes’ of particles can be seen. They are 
caused by periodic boundary conditions: for small U, due to a larger extension of the 
condensate its opposite sides merge together and form a stripe; a larger lattice would 
prevent this finite-size effect and hence the regions where the stripes occur in fact belong 
to the condensed phase. Stripes are also present for sufficiently negative U, but their 
origin is different: the surface now repels adatoms, which tend to cluster together.

The situation is qualitatively similar for other values of σ, see figure 6. For σ> 1, 
condensation occurs for U  >  0; the surface is covered by a ‘wetting layer’ composed of σ⌊ ⌋ 
layers of particles, with the condensate on the top-most layer. For σ< 1, the condensate 
(which again happens for U  >  0) is surrounded by empty sites and there is no wetting 
layer. This is due to the fact that the potential V(m) has a minimum at m   =   0, and is not 
sufficiently deep for m  >  0 (see figure 3(a)) for the particles to be attracted enough to the 
substrate. Similarly, for σ> 1 and U  <  0, the surface is empty apart from a localised, very 
high condensate peak (white spots in figure 6, right panel; for high J there are no peaks 
because large surface tension does not let the simulation leave the flat initial condition).

Figure 5. Phase diagram for σ = 1; each square represents a snapshot of the  
(2   +   1)d system with ×64 64 sites, simulated for a given pair U, J. Colours represent 
different numbers of particles per site (see the colour bar). The condensates have 
been shifted so that each appears in the centre of the lattice.
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Figures 5–6 show that the shape of the condensate in the xy-plane depends on the 
parameters J, U: large U makes the condensate narrower and higher, while large J makes 
its surface (in the z-direction) flatter. Figure 7, top row, shows that on a square lattice, 
small J leads to circularly-shaped condensates in the xy-plane, whereas for large J the con-
densate assumes a more square shape, reflecting the symmetry of the underlying lattice. 
The same figure, bottom row, demonstrates that as the condensate becomes more rect-
angular, its profile (section through the centre in the xz-plane) changes from an approxi-
mately parabolic to a more rectangular one. We shall see in section 4.4, that the xz-profile 
of the (2   +   1)-dimensional condensate can be well approximated by the (1   +   1)d model.

The shape of the condensate does not depend on whether the system is in equi-
librium (by making the hops symmetric: rk   =   1/4), or not. For example, even in the 
extreme case when particles are allowed to jump to the right and not to the left (which 
produces a strong current in the x-direction), the steady-state shape remains unaf-
fected. This is caused by the lack of any explicit dependence of the steady-state distri-
bution (2) on the hopping probabilities {rk}. The dynamics of condensation, however, 
will be different for different {rk}.

Before we discuss the dynamics of condensation, let us briefly comment on the 
relation between what we see in our model, and experiments on Stranski–Krastanov 
growth, which partly motivated this study. As explained in the introduction, Stranski–
Krastanov growth can be used to produce quantum dots. A visual comparison between 
our results, and experimentally obtained AlxGa1−xAs quantum dots on GaAs [26]  
(figures 9–11 therein) and GaN on AlN [27] (figure 2 therein) shows that these quantum 
dots are not dissimilar to our condensates, and their shape depends on growth condi-
tions and chemical composition which corresponds to different values of J, U param-
eters in our model. Our model can therefore qualitatively reproduce certain aspects of 
the growth of quantum dots.

3.2. Dynamics

We now discuss the dynamics of condensation in this model. The equilibrium Monte 
Carlo algorithm employed in the previous section cannot be used here and we have 

Figure 6. Phase diagrams for σ = 0.5, 0.83, and 3 (left to right). Colours represent 
different numbers of particles per site (see the color bar).
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to simulate the process using a kinetic Monte Carlo algorithm with the hopping rate 
(2). Figure 8, left, shows the time evolution of the equilibrium model (rk   =   1/4), 
starting from randomly distributed particles at t   =   0. The process has two phases. 
First, particles rapidly aggregate into clusters; the second, slower stage involves clus-
ters exchanging particles through the background. Eventually, only one cluster—the 
 condensate—remains in the system.

The time it takes for a single condensate to build up can be found using similar 
 arguments to those for the ZRP [3]. Numerical simulations suggest that the time 
T to condensation is dominated by the process of merging the last few remaining 

clusters. Each cluster has on average ρ ρ= −O M O L( ) (( ) )c
2  particles and the inter-

cluster distance is O(L). A cluster of size m loses particles through its bound-
ary. The rate uemit with which each of the l   =   l(m) sites at the edge of the cluster 
emits particles only weakly depends on the size if ≫m 1. For example, the rate 

at which particles are emitted from a site of height h in the condensate’s wall is 

ρ ρ= − − ≅ −u g h h g h h g h g h J( ( 1, )/ ( , )) ( ( 1, )/ ( , )) exp( 2 )emit
3

c c  for any ≫h 1, and hence 
we can take it to be constant for all clusters. The total emission rate of the clus-
ter is luemit. Put differently, each such particle is emitted every =T lu1/( )emit emit  time 

units. Once they leave the cluster, the particles undergo a random walk with diffusion 

constant ρ ρ ρ ρ ρ ρ ρ ρ ρ≈ + | = +D u g g( 1 , , , ) [ ( , )/ ( 1, )]c c c c c c c c c
4. Most of these particles are 

quickly reabsorbed due to recurrence of 2d random walk [32] but particles that have 
departed a distance O(L) can be intercepted by other clusters. The time the particle 

needs to travel to reach another cluster is approximately =T O L D( / )travel
2 . Since Ttravel 

increases with L whereas Temit does not, diffusion is the limiting step and the total time 

Figure 7. Top row: condensates on a square lattice xy-plane) take more rectangular 
shapes for larger values of J (σ = 1, L   =   200 in both cases). The colour coding has 
been chosen so as to enhance visibility of droplet boundaries. Circles (solid lines 
below) correspond to half of the maximal height. Bottom: central cross-sections 
of the condensate (xz-plane) for the same J, U as pictures in the upper row. The 
profile of the condensate becomes more rectangular as J increases, the height 
decreases, and the width in the x-direction increases (see appendix B).
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it takes to move a particle from one cluster to another one is approximately equal to 
Ttravel for large enough L.

Large clusters emit more particles, but they also re-absorb them with higher proba-
bility due to their larger circumference. A particle that has diffused away is more likely 
to be absorbed by a large than a small cluster. This causes a net current of particles 
flowing from smaller to larger clusters. The time it takes to transfer O(L2) particles 

from a small cluster to the condensate is therefore = =T O L T O L D( ) ( / )2
travel

4 . The 
scaling ∝ −T D L1 4 is verified in figure 9, left, where we plot the average time it takes to 
have only one cluster (the condensate) in the system.

Interestingly, the non-equilibrium case in which there is a current of particles in the 
y direction, leads to the same prediction (figure 9, right). Although individual particles 
drift preferably in the y direction, the clusters remain quasi-static, see figure 8, right. 
Moreover, the time for a particle to move from one cluster to another is again O(L2); 
its motion is still diffusive in the x direction and, unless the clusters are accidentally 
aligned so that particles can move between them in straight lines, diffusion dominates 
over the ballistic motion for which the time scale would be O(L).

4. Analytically soluble (1   +   1)d model

Although the steady-state probability of the (2   +   1)d model has a simple, factorised 
form (2), its exact solution remains elusive. However, we can learn about many proper-
ties of this model using approximate methods. In this section we shall analyse a (1   +   1)d  

Figure 8. Example of the time evolution of a ×32 32 system, for 
σ ρ= = = =J U1.1, 15, 1, 2. Each xy-plane (with periodic boundary conditions) 

corresponds to a single time frame. Cubes represent occupied sites with two or 
more particles (the background has one particle per site). Left: equilibrium model 
(rk   =   1/4); right: non-equilibrium model ( = = = =r r r r1/3, 01 3 4 2 ).
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counterpart of the model, described by equations (4) and (5). We shall show that this 
simpler model predicts not only the critical density ρc but also qualitatively reproduces 
the transition lines in the (U, J )-phase diagrams from figures 5 and 6.

The model can be analysed along the same lines as in [22]. Let us define the canoni-
cal partition function

∑ ∏ ∑δ=







−







{ } =

+

=

Z L M g m m m M( , ) ( , ) ,
m i

L

i i

i

L

i

1

1

1i

 (9)

and its grand-canonical counterpart

∑ ∑ ∏= =
∑

{ } =

+=Z z Z L M z z g m m( ) ( , ) ( , ),L

M

M

m

m

i

L

i i

1

1

i

i

L

i

1 (10)

where z is the fugacity, determined from its relationship to the average density,

∑ρ = =
∂

∂
z

L
m

z

L

Z z

z
( )

1 ln ( )
.

i

i
L

 (11)

Thanks to the one-dimensionality of the problem, ZL(z) can be expressed using the 
standard transfer-matrix approach:

⋯∑= =
…

Z z T T T T z( ) Tr ( ) ,L

m m

m m m m m m
L

, , L

L

1

1 2 2 3 1 (12)

where = +T z g m n( , )mn
m n( )/2  denotes the transfer matrix. We expect the partition func-

tion ZL(z) to have a finite radius of convergence zc. If ρ →∞z( )  as z increases from 0 
to zc, the grand-canonical ensemble is valid for any density of particles, and the prob-
ability p(m) of finding m particles at a randomly chosen site reads

φ

φ

=

∑
=

∞p m( ) ,m

m
m

2

0

2 (13)

Figure 9. The time to condensation for different sizes L   =   24, 32, 48, 
64, 96. Left: equilibrium model (rk   =   1/4), right: non-equilibrium model 
( = = = =r r r r1/3, 01 3 4 2 ). In all cases σ= = =J U1.1, 15, 1. The solid 
line is = −T D L1 4 with D   =   (g(1, 1)/g(2, 1))4   =   1076.88 for the left panel and 
= ×D 4 1076.88 for the right panel. Note that the unknown proportionality 

coefficient in the anticipated asymptotic formula ∝ −T D L1 4 turns out to be close 
to one in the non-equilibrium case and to four in the equilibrium case.
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where φm is the principal eigenvector (associated with the largest eigenvalue) of Tmn(z). 

If, however, ρ z( ) has a finite limiting value ρ ρz( ) c⟶  as z approaches zc, then equa-
tion (11) cannot be satisfied for z zc⩾  (or equivalently for ρ ρ> c) and the grand-canon-
ical ensemble cannot be constructed. This corresponds to a transition from the liquid 
to the condensed state for ρ ρ> c.

Since for our choice (7) of g(m, n) the critical =z 1c , to determine the critical den-
sity at which this transition happens, we must find the eigenvector φm of the matrix  
Tmn   =   g(m,n) to the maximal eigenvalue λmax:

∑ φ λ φ=g m n( , ) ,
n

n mmax (14)

and, rewriting the partition function in the large-L limit as λ≅Z z( )L
L
max, from equa-

tion (11) we obtain

ρ

φ

φ

=

∑

∑

=

∞

=

∞

m

.m
m

m
m

c
0

2

0

2
 (15)

Condensation can occur only if φm decays with m faster than  ∼m−1, otherwise 
the critical density ρc becomes infinite in the thermodynamic limit. It turns out that 
although the eigenproblem (14) is very easy to solve numerically, it is still too difficult 
to solve analytically for our particular choice of g(m, n) from equation (7). To make 
progress, we observe that since the occupation numbers are discrete, the potential val-
ues are discretised as well. Moreover, the value of V(m) varies significantly with m only 
for the first few integer m. This suggests that the potential can be approximated by a 
sum of a few Kronecker delta functions with appropriate amplitudes.

4.1. Solution for σ ≪ 1

Let us first consider the case ≪σ 1. As illustrated in figure 3(a), the on-site potential 
V(m) has one dominant minimum. This allows us to approximate the potential as 

δ−U m˜ [ ], where δ m[ ] is the Kronecker delta, and σ σ= −U U˜ ( )3 9 . The value of Ũ  is cho-
sen to reproduce the value obtained from the exact formula (8) for m   =   0. Figure 3(b) 
shows this approximate potential for σ = 0.5. The term δ m[ ] lowers the energy and hence 
it increases the probability of a state in which the occupation is m   =   0; non-zero occu-
pation, on the other hand, is energetically unfavourable. Physically, this could mean 
that the particles cannot wet the substrate that is strongly ‘hydrophobic’. Therefore, 
the on-site potential favours empty sites, which leads to mass condensation seen as an 
‘island’ of particles discussed before.

This model, which we shall call ‘model A’ here, can be solved using the same 
approach as in [22]. Assuming the weight matrix

δ δ= − | − |+ +g m n J m n U m n( , ) exp[ ˜( [ ] [ ])/2], (16)

the eigenvector φm which solves equation (14) must take the form φ δ∝ +A m Bmexp( [ ] )m , 
with some constants A, B. Inserting it into equation (14) we obtain the constants 

= = − − − − ≡− +A U B J U J J˜/2, ln[1 exp( ˜)] 0, where = − − −J Uln[1 exp( ˜)]0 . Since 
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φ ∝ Bmexp( )m , the entries of φm increase with increasing m for J  <  J0 and, from equa-
tion (15), the critical density ρc is infinite. This means that condensation cannot occur 
even for a very high density ρ of particles if J  <  J0. For J  >  J0, however, φm falls off 
exponentially, and the critical density for model A reads

ρ

φ

φ

=

∑

∑

=
−

− −

=

∞

=

∞ − − −

m
e 1

[e e ][e 1]
.A m

m

m
m

J

J J J J Jc
0

2

0

2 2( ) 2( )

0

0 0 0
 (17)

For example, for σ = 0.5 and U   =   J   =   2 (where > ≈J J 1.50 ), the critical density 
ρ ≈ 0.53c . The transition line, which separates the region in the (U, J )-plane where con-
densation occurs from the region where it does not, is given by

= − −
σ σ− −J ln(1 e ).U( )3 9

 (18)

In figure 10 we show a plot of equation (18) compared with an exact, numerical 
solution to the eigenproblem (14). The agreement is good even for a relatively large 
σ = 0.5. It is also worth noticing that the transition line predicted by this model is 
qualitatively similar to that of the (2   +   1)d model from figure 6.

4.2. Solution for σ ≫ 1

In the case ≫σ 1, the minimum of the potential is located at σ=m ⌊ ⌋. Since for all 
occupation numbers σ<m ⌊ ⌋ the potential is very large (see figure 3), we can approxi-
mate it by

Figure 10. Phase transition lines for the (1   +   1)d model with LJ potential (8). The 
dashed lines are analytic solutions: The long-dashed curve corresponds to model 
A (equation (18)), the short-dashed and the dot-dashed to the double-delta model 
C (equation (27)). The points are numerical solutions obtained by diagonalising  
g(m, n) numerically (see appendix C).
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δ σ σ

σ

≈











− −

∞ <

⌊ ⌋ ⩾ ⌊ ⌋

⌊ ⌋
V m

U m m

m
( )

˜ [ ], for ,

, for ,
 (19)

where

σ

σ

σ

σ
=












 +





−



 +














U U˜
1 1

.
3 9

⌊ ⌋ ⌊ ⌋
 (20)

Let us call this ‘model B’. The potential barrier at σ= −m 10 ⌊ ⌋  means that if the 
density of particles ρ σ> ⌊ ⌋, no site will have less than σ⌊ ⌋ particles. Consequently, all 
elements σ= … −m 0, , 1⌊ ⌋  of the eigenvector φm will be zero. We can derive the criti-
cal density for condensation in the same way as in the previous section. Assuming that 

φ δ σ∝ − +⌊ ⌋A m Bmexp( [ ] )m  for σm ⩾ ⌊ ⌋, we obtain that = = − +A U B J J˜/2, 0, where 

= − − −J Uln[1 exp( ˜)]0  has the same form as previously, albeit with a different Ũ  given 
by equation (20). The critical density given by equation (17) is shifted by σ⌊ ⌋ which 
accounts for the vanishing elements of the eigenvector (the shift by x occurs for any 
g(m, n) whose eigenvector’s first x elements vanish):

ρ σ ρ σ= + = +
−

− −− − −

e 1

[e e ][e 1]
.B A

J

J J J J Jc c 2( ) 2( )

0

0 0 0
⌊ ⌋ ⌊ ⌋ (21)

The critical line J(U  ) separating the condensed and liquid phases is

σ

σ

σ

σ
= −












−







−









 +





−



 +




























⌊ ⌋ ⌊ ⌋
J Uln 1 exp

1 1
.

3 9

 (22)

This expression is a good approximation for the critical line for large σ, but is much 
worse for σ≈ 2–3 that we use here in simulations. In the next section 4.3, we show that 
if the potential V(m) is approximated by a sum of two delta functions (‘model C’), the 
agreement between the approximate solution J(U ) (see equation (27)) and the simula-
tion data becomes much better for smaller σ, as seen in figure 10.

4.3. Double-delta approximation of the potential

In previous sections we used a single-Kronecker delta approximation of the LJ poten-
tial. This approximation is fairly sufficient for the two limits from sections 4.1, B for 
≪σ 1 and ≫σ 1, but it does not work well for σ≈ 1 which is the range we are interested 

in in this work. The approximation can be improved by modelling the potential with 
two Kronecker delta functions with suitable amplitudes:

δ σ δ σ σ

σ

=











− − − − −

∞ <
V m

U m U m m

m
( )

[ ] [ 1], for ,

, for ,

1 2
˜ ⌊ ⌋ ˜ ⌊ ⌋   ⩾ ⌊ ⌋

  ⌊ ⌋
 (23)
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where

˜

⌊ ⌋ ⌊ ⌋
˜

⌊ ⌋ ⌊ ⌋

σ

σ

σ

σ

σ

σ

σ

σ
=











 +





−



 +














=











 +





−



 +














U U U U
1 1

and
2 2

.1
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 (24)

The potential (23) is shown in figure 3(b) for σ = 1 and 2.5 (blue continu-
ous lines). We shall refer to this model as ‘model C’. The principal eigenvector of  

g(m, n) for this model is given by φ δ σ δ σ∝ − + − − +⌊ ⌋ ⌊ ⌋A n A n Bnexp( [ ] [ 1] )n 1 2  (and 

φ φ= … = =
σ −⌊ ⌋ 00 1 ), where =A Ũ /22 2 . The parameters A1 and B can be determined 

analytically from the third order polynomial equation in eB

= + −
−

+ + +
+

+
0 e e

e

e 1
,A U B J U

B J

B J
/2

2( )
1 1 2 (25)

on substitution of A1

= + − + − ++A
U

B J
2

2 ln[e e (1 2e cosh e )].B J U B B
1

1 21 (26)

The transition line, which corresponds to the condition B   =   0, can be determined 
from a cubic equation in eJ,

− = − + − +
− −J1 e [e (1 e ) e ](2 2 cosh e ).J U J J J U2 1 (27)

This equation can be solved exactly, but the formula for J   =   J(U ) is complicated 
and not very illuminating, hence we omit it here and only plot the solution in figure 10.

4.4. Shape of the condensate

Above ρc, a spatially extended condensate forms in the system, see figure 11. The fig-
ure shows that the shape of the condensate, obtained from MC simulations by shift-
ing the condensate to i   =   L/2 and averaging over many samples, is approximately 
parabolic. The shape can be analytically derived using the result of [22] for a (1   +   1)d 

model with a weight function = | − |g m n K m n p m p n( , ) ( ) ( ) ( ), where K(m) and p(m) 

are arbitrary functions decaying sufficiently fast with →∞m . Let us assume that the 

condensate has mass ρ= −′M M Lc , and define rescaled variables ≡ ′h m M/i⟨ ⟩  and 

= −
′

t 1
i

w M

2
, where mi⟨ ⟩ denotes the mean occupation of lattice site i and w is a con-

stant which we shall determine later. In the large-L limit, the shape of the condensate 
in these new variables is given by [22]

=h t
w

v

K v

K vt
( )

2
ln

˜( )

˜( )
, (28)

where ≡∑ | |=−∞
+∞K x K m˜( ) ( )em

mx, and w and v are auxiliary parameters that can be 
obtained from λ = K v˜( )max  and
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′ −

w v
xK x

K x
x

1

2

˜ ( )

˜( )
d .

v

0

1/2

 (29)

The one-point weight function p(m) enters these formulas only through the largest 
eigenvalue λmax of the matrix g(m, n). Applying these results to our model with LJ 

potential, we have = −K m( ) e Jm, and hence the function =
−

K x˜( )
J

J x

sinh

cosh cosh
. The shape 

h(t) reads

=





−

−






h t
w

v

J vt

J v
( )

2
ln

cosh cosh

cosh cosh
, (30)

where v must be determined from the equation

λ =
−

J

J v

sinh

cosh cosh
.max (31)

As already mentioned, the only dependence on the potential = −V m p m( ) ln ( ) is 
through the eigenvalue λmax of g(m, n), which can be found numerically for the LJ 
potential, and analytically for the approximate models A–C, for which

= −v J J ,0 (32)

and J0 is obtained from equations (18), (22) and (27), for the respective models. 
Equation (30) is a good approximation to the exact shape of the (1   +   1)d condensate 
already for relatively small M, see figure 11.

It is also interesting to note that the two-dimensional sections of the (2   +   1)d 
condensate resemble very closely the (1   +   1)d envelope. In figure 12 we show that 
the xz-section through the centre of the condensate as well as further non-central 

Figure 11. The shape of the (1   +   1)d condensate plotted in the normalised variables 
(t, h) for σ = 1. The curves represent equation (30), where for black continuous lines 
λmax was obtained by numerical diagonalisation of a ×100 100 g(m, n) matrix, and 
for blue dashed line by solving model C (the two curves are identical in the right 
panel); the circles come from a MC simulation of the LJ system of size L   =   2000 
with =M 60 000 particles, averaged over 107 MC sweeps. The layer of thickness 
ρ ≈ 1.6c  and 1.0 has been subtracted in the left and right panel, respectively. The 

actual height and width of the condensate are ≈′h M(0) 65 and ≈′w M 1302 for 

the left panel, and ≈′h M(0) 48 and ≈′w M 1379 for the right one, respectively.
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sections are very well approximated by equation (30), with v, J fitted to the numerical 
data. However, we do not know whether this similarity is not a mere coincidence, nor 
could we find an analytical formula which would predict the ‘effective’ constants w, v 
from the ‘bare’ parameters U, J of the (2   +   1)d model.

5. Deposition of new particles with constant rate

One of the features of our non-equilibrium model is that its steady-state probability 
assumes a relatively simple, factorised form (2) and, as we have seen, this allows us to 
calculate some quantities analytically. In this section, we explore the consequences of 
breaking this factorisation by releasing the constraint of mass conservation.

In the new model, particles are added to the system at a constant rate α, as in 
molecular beam epitaxy. This model does not have a steady state in the sense of the 
constant-mass model from previous sections, because the number of particles per site 
increases over time. However, we shall see that the model has a quasi-steady state when 
the number of deposited particles is not too large, and that this state is very similar to 
what we discussed before.

Figure 13 shows snapshots of the system at different times, for two different (low 
and high) mass deposition rates. For low deposition rates it can be seen that a single 
condensate is formed. This is not unexpected: particles jump between lattice sites much 
faster than it takes to add a new particle, and the system relaxes to a quasi-steady state 
similar to that of the constant-mass model. However, when the deposition rate α is 
high enough, new condensates are formed faster than they can coalesce. In this regime 
multiple condensates arise.

Figure 12. Cross-sections of the (2   +   1)d condensate with LJ potential 
(σ = 1) in xz plane (circles). The biggest envelope corresponds to the most-central 
section (y   =   0), with other sections taken at = …y 10, 20, 30,  lattice sites. In sum, 
8 sections are plotted in the left and 9 in the right panel. The continuous lines 
are the (1   +   1)d theoretical shapes (30) fitted with only two parameters v, J, 
and w   =   w(v, J ) obtained from equation (29). The parameters v, J were fitted 

separately for each section; the ‘effective’ parameters J and = − + −
−U ln[(1 1)/(e 1)]J v  

(an exact solution for the (1   +   1)d delta model) obtained from the fit decrease 
monotonously with increasing distance y from the central section. The details of 
the simulation can be found in appendix B.
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We can estimate the magnitude of the deposition rate αsep that separates the two 
regimes as follows. We consider only what happens after the first σ⌊ ⌋ layers have been 
filled because this is when condensation begins. A newly added particle stays on the 
surface of the top-most layer and performs a random walk with diffusion constant D 
(see section 3.2) until it collides with another particle and becomes the seed of a new 
cluster. Let us denote (with a slight abuse of notation) the quasi-steady state density 
of such isolated particles by ρ

5. This excludes particles from the complete layers as 
well as particles in the clusters. If we neglect spatial correlations, the probability that 
our particle collides with another one during the next step is ρ for ≪ρ 1. The prob-
ability that the particle has not yet collided after n steps is then ρ−(1 )n, and the mean 

number of steps to collision ρ ρ ρ ρ ρ=∑ − = − ≅n n (1 ) (1 )/ 1/n
n⟨ ⟩ . The time to colli-

sion is then  ∼ ρD1/( ). During this time the particle departs from its starting point by 

ρ∼ ∼
−r n 1/2⟨ ⟩ ⟨ ⟩ . This distance gives the characteristic length scale for spatial sepa-

ration of clusters of particles. If it is of the order of the spatial extension of the simula-
tion box L, only one cluster—the condensate—will form in the system. By equating r⟨ ⟩ 

and L we obtain the density ρ∼ L1/ 2 at which this happens. To relate this density to 
the deposition rate α we note that deposition must be balanced by the rate with which 
particles form clusters; since the clusters are relatively narrow, their contribution to 

the average density of particles can be neglected. This gives us α ρ ρ= L D2  where ρL2 is 

the number of ‘free’ particles in the system. Inserting ρ∼ L1/ 2 we obtain α ∼D L/sep
2. 

Hence, if ≫α D L/sep
2, multiple condensates are present in the system, otherwise there is 

only one condensate. Figure 14 shows the inverse participation ratio (IPR) of the occu-
pation numbers {mi}, which approximately corresponds to the number of condensates, 

Figure 13. Simulations of a non-equilibrium system with σ= = =J U1.1, 3, 1 on 
a ×128 128 lattice for a constant rate of mass deposition: (top row) α = 9.85 
incoming particles per unit time, (bottom row) α = 0.31 particles per unit time. 

The time ranges (top) from × × ×1.5 10 , 1.8 10 , 3.3 103 3 3 to ×8.3 103 and (bottom) 
from × × ×47.9 10 , 58.5 10 , 106.4 103 3 3 to ×266 103 time units. Multiple condensates 

form when the deposition rate is high enough (top), whereas for low α (bottom) 
only one condensate is created.

5 This new ρ should not be confused with ρ= M L/ 2 defined previously. 
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as a function of the density ρ of the already deposited mass (proportional to the physi-

cal time), for different deposition rates α. The figure indicates that the theoretically 

predicted αsep correctly estimates the critical deposition rate if α ≈ D L5 /sep
2, i.e. the 

proportionality factor is of the order of 5.
Regardless of whether the deposition rate is high or low, the shape of the condensate(s) 

can still be well approximated by the equilibrium (1   +   1)d analytical solution. This 
is illustrated in figure 15, where we compare the shape obtained in simulations of 
the (2   +   1)d LJ model for mass deposition rate α = 0.22 for J   =   0.5 and α = 0.62 for 
J   =   1.1 to the exact solution (30) for the (1   +   1)d model, with w, v fitted to the cross-
sections of the (2   +   1)d condensate (see appendix B for more details).

6. Conclusions

In this work, motivated by thin-film growth processes and, in particular, by Stranski–
Krastanov growth mode, we propose a simple, non-equilibrium statistical physics 
model in which spatially extended condensates (‘islands’) form when the density of 
particles exceeds a critical value. Our model assumes short-range, valence-bond type 
interactions between particles, and Lennard–Jones interactions between particles and 
the substrate on which growth occurs. Depending on the range σ of the Lennard–Jones 
potential, condensation occurs either directly on the substrate (for σ< 1) or on a previ-
ously formed layer of several particles thick (for σ> 1).

Figure 14. The inverse participation ratio, ∑ ∑= ( )m mIPR /
i i i i

2 2 (where the 

sums run over all existing island masses), of condensates formed in J   =   1.1, U   =   3, 

σ = 1 systems with different deposition rates (the fastest is the red topmost curve, 
the slowest is the blue bottommost one) as a function of the density ρ of the already 
deposited mass. The mass influxes are given in particles per unit time. The error 

bars are standard deviations of 20 simulation runs; the y-axis is logarithmic. The 

theoretical estimate α ∝D L/sep
2 for the rate separating regimes with one and many 

condensates yields 0.13 and 0.033 for L   =   32 and 64, respectively. Assuming the 
proportionality factor five, the estimated critical deposition rates are 0.65 and 0.165, 
respectively, and they can be seen to separate well the curves for which the IPR 
remains very close to one for all densities (times) and for which it is larger than one.
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Although there have been numerous approaches to simulating thin-film growth, 
(see, e.g. the review [33], or a recent kinetic Monte Carlo study [34]), the most interest-
ing feature of our oversimplified model is that it enables us to calculate many quantities 
analytically. This is possible due to a pair-factorised steady state (PFSS) probability 
of microstates in our model. In the (1   +   1)d version of the model, we have been able 
to derive the phase diagram of the model, to calculate the critical density for conden-
sation, and to find the shape of the condensate which turned out to depend on the 
strength of adatom-adatom and adatom-substrate interactions. In the (2   +   1)d model, 
which corresponds to the physically relevant growth of 2d layers of adatoms, we have 
shown that the shape of the condensate is well approximated by the (1   +   1)d solution.

We have also studied an open system in which new particles are added at a constant 
rate. We have shown that condensation occurs above a certain density of particles, and 
although it is a transient phenomenon, the properties of the condensate are similar to 
those of the model with mass conservation.

In this work, we have focused on the steady-state, or quasi-steady state properties 
of the condensate and its late-time dynamics. It would be interesting to broaden our 
research into the kinetics of initial steps of condensate formation. Further research 
could also involve manipulating the geometry of the underlying lattice, e.g. introduc-
tion of lattice defects which could imitate heteroepitaxial growth more closely [35, 36].
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Appendix A. Typical values of σ for thin-layer growth

Assuming that the substrate atoms are uniformly distributed over the lower half-space 
(z  <  0) of the system, the form of the integrated LJ potential is [31]

π σ σ σ
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where n is the number density of substrate atoms on the surface, ϵ has the dimension 
of energy per mol, σ′ is the range of the LJ potential, and d is the layer spacing of the 
substrate. The parameters U and σ from our formula (8) can be expressed through 
σ′n d, ,  as:
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Carbon or silicon crystals are usually modelled with, very roughly, 3 Å  <  σ′  <  4 Å 
[37–39], whereas lattice constants of C, Si or GaAs are respectively 3.56 Å, 5.43 Å, and 
5.65 Å [40], which yields ≈U 0.05 eV and σ≈ 2.5 Å. Taking into account that in our work 
all distances are measured in terms of the lattice spacing d, and that ≈d 1 Å in most 
metals, σ should be about 0.5–3; these are the values we use in this work. The value of J, 
on the other hand, can be approximated by the Ehrlich-Schwoebel barrier energy, which 
is typically of the order 0.1–0.5 eV. Together with k TB  set to 1 in our simulations and 
a liquid nitrogen cooled molecular-beam epitaxy temperature of 77 K, we get the very 
rough estimates of ≈ ≈U J10, 50. In our model, however, we use ≈J 1 because for signifi-
cantly greater values the acceptance rate in MC simulations would become many orders 
of magnitude smaller, and consequently the simulation times would become unfeasible.

Appendix B. Computer simulations

To determine the phase diagrams in figures 5 and 6 we used equilibrium Monte Carlo 
simulations with Metropolis acceptance probability [41]. A single move consisted of 
picking up a random site and, if it was occupied, moving a particle to another randomly 
chosen site anywhere in the system. In comparison to the stochastic simulation of the 
original dynamics of the model, this significantly reduced the computation time while 
preserving the stationary state [21]. For each pair (U, J ), the ×64 64 system (with 
ρ = 3 for σ = 0.5, 0.8, 1 and ρ = 6 for σ = 3) was simulated for ×4 107 sweeps6 and, 
prior to that, it was thermalised for ×2 107 sweeps. The strongly rectangular shape of 
the island for high U and J values is due to the geometry of the square lattice and is 
independent of the initial conditions.

6 A ‘sweep’ comprises L attempted moves in (1   +   1)d, whereas in (2   +   1)d it corresponds to L2 attempts.
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In figures 7 and 12, Monte Carlo simulations were performed on a lattice of size 
= ×N 200 200 with M   =   25   ×   N   =  106 particles and the Lennard–Jones on-site poten-

tial. Both cuboid and cylindrical initial condition were used and as we did not find 
any differences between them, we concluded that thermalisation was long enough to 
erase any trace of the initial configuration. The simulations took ×8 107 time steps 
(around four weeks of computer time), half of which was thermalisation, for the cuboid 
( × ×150 150 44) initial condition, and ×4 107 time steps, 10% of which was thermali-
sation, for the cylindrical (diameter 140, height 60) initial condition. The final plots 
presented in this paper have been obtained from the latter simulation.

The simulations of the dynamics of the (2   +   1)d model, and the model with mass 
deposition were performed using a simplified, kinetic Monte Carlo algorithm. Each time 
step a random site was picked and, if it was non-empty, one of the nearest neighbours 
was chosen with probabilities { }r r r r, , ,1 2 3 4  for right, left, top, and bottom jumps, respec-
tively. The particle was then moved between these two sites with probability u u/ max 
where u is the rate from equation (1) and umax was chosen to be larger than the largest 
possible hop rate for a given set of parameters. This procedure was repeated L2 times. 
Finally, the physical time was incremented by =t ud 1/ max. In the model with mass 
deposition, a new particle was added every αtd /  steps. This algorithm, although very 
fast, differs slightly from exact kinetic Monte Carlo algorithms such as the Gillespie 
algorithm [42]. However, we checked that both algorithms produce indistinguishable 
results when averaged over a sufficiently long time. Simulations for figures 13 and 15 
were performed on a ×128 128 square lattice, with one particle at a randomly chosen site 
as the initial configuration. For simulations in figure 14, with ×32 32 and ×64 64 square 
lattice systems, we counted as condensates all clusters both occupying an area greater 
than one site and having a height greater than one particle. The time to condensation 
in figure 9 was determined as the average time (20–100 simulations per data point) at 
which the number of clusters larger than ρ = M N/  dropped to one for the first time.

The histograms of the (2   +   1)d condensates in figure 15 were obtained from a single 
simulation run with mass influx α = 0.62 for J   =   1.1, α = 0.22 for J   =   0.5. The con-
densate heights were rescaled according to their masses, the discrete lattice occupations 
were (linearly) interpolated, and only then were the interpolations averaged producing 
the histograms.

The simulations of the (1   +   1)d systems with σ = 1 for figure 11 were performed on 
L   =   2000 nodes with =M 60 000 particles. The simulations took ×8 107 sweeps, with 
×7 107 sweeps devoted to thermalisation, and 107 for recording the histogram. The 

theoretical ρ ≈ 1.581c  and the actual subtracted background was ρ≈ ±1.599 0.004 thick 
for U   =   1.5, J   =   2 (ρ ρ= = ±1 0.001c  for U   =   4, J   =   8). The theoretical height of the 

condensate was ≈′h M(0) 64.84, and the actual height measured in simulations was 

65.03 ( ≈′h M(0) 48.02, simulations: 47.38).

Appendix C. Critical density

The transition lines shown for the Lennard–Jones potential in figure 10 were obtained 
numerically by diagonalising the matrix g(m, n), as in equation (14). For faster per-
formance, only a 21-element wide band was retained in the matrix (10 elements below 
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and above the diagonal; the furthermost elements are of the order of − Jexp( 10 )), but 
to avoid numerical errors we used a direct banded matrix solver instead of the itera-
tive (e.g. Lanczos) method. The parameter U was sampled at 0.025 intervals and the 
parameter J was determined by the bisection method (the last step of size ∆ =J 0.0195). 
The points where the critical density ρc from equation (15) increased slower than a 
logarithm of the matrix size were considered to belong to the condensed phase. The 
behaviour was classified as either slower or faster than logarithmic by: first, measuring 

ρ L( )c  for the weight matrix sizes 250, 500, 1000, 2000; next, fitting a line in Lln  for the 
first three points, and another one for the last three points; finally, comparing the two 
slopes and if the second one was lower, classifying a given U, J pair as belonging to the 
condensed phase.

In order to determine the critical density of particles above which condensation 
occurs, we simulated the model with fixed σJ U, ,  while varying the density ρ≡M L/ . 
Each simulation was thermalised prior to measuring the mass ′M  of the condensate.

We then used linear regression ρ= −′M M L c to determine ρc from the sizes of 
the condensate for different M, taking into account only sufficiently large ′M , see 
figure C1.

We also performed simulations close to the expected ρc, as shown in the insets of 
figure C1. The results indicate that there is a non-linear drop in the condensate mass 
near ρc and hence our method may have produced small but systematic errors when 
estimating the critical density via linear regression.
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